Experimental Investigations on Leakages in Positive Displacement Machines

IF 0.9 Q4 ENGINEERING, MECHANICAL
H. H. Patel, V. Lakhera
{"title":"Experimental Investigations on Leakages in Positive Displacement Machines","authors":"H. H. Patel, V. Lakhera","doi":"10.1155/2021/6684329","DOIUrl":null,"url":null,"abstract":"The clearance gaps in positive displacement machines such as compressors, pumps, expanders, and turbines are critical for their performance and reliability. The leakage flow through these clearances influences the volumetric and adiabatic efficiencies of the machines. The extent of the leakage flow depends on the size and shape of clearance paths and pressure differences across these paths. Usually, the mass flow through the gaps is estimated using the isentropic nozzle equation with the flow coefficients applied to correct for the real flow conditions. However, the flow coefficients applied generally do not take into account the shape and size of these leakage paths. For that reason, a proper understanding of the relationship between flow coefficients and shape parameters is crucial for an accurate prediction of leakage flows. The present study investigates the influence of the various dimensionless parameters such as Reynolds number, Mach number, and pressure ratio on the flow coefficients for circular and rectangular clearance shapes. The flow coefficients are determined by comparing the experimental values obtained in an experimental test rig and the flow rates obtained from the isentropic nozzle equation. It is observed that in the case of circular clearances, the mean deviation of the experimental leakage results (in comparison to the analytical results using isotropic nozzle equations) is +9.1%, which is significantly lower than the mean deviation (+20.5%) in the case of rectangular clearance leakages. The study indicates that the isentropic nozzle equation method is more suitable for predicting the leakages through the circular clearances and needs modifications for consideration of the rectangular clearances. Using regression analysis, empirical correlations are developed to predict the flow coefficient in terms of Reynolds number, Mach number, pressure ratio, aspect ratio, and β ratio, which are found to match within ±6.4 percent of the numerical results for the rectangular clearance and within the range of -3.6 percent to +5.1 percent of the numerical result for the circular clearance. The empirical relationships presented in this study can be extended to evaluate the flow coefficients in a positive displacement machine.","PeriodicalId":46335,"journal":{"name":"International Journal of Rotating Machinery","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Rotating Machinery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2021/6684329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The clearance gaps in positive displacement machines such as compressors, pumps, expanders, and turbines are critical for their performance and reliability. The leakage flow through these clearances influences the volumetric and adiabatic efficiencies of the machines. The extent of the leakage flow depends on the size and shape of clearance paths and pressure differences across these paths. Usually, the mass flow through the gaps is estimated using the isentropic nozzle equation with the flow coefficients applied to correct for the real flow conditions. However, the flow coefficients applied generally do not take into account the shape and size of these leakage paths. For that reason, a proper understanding of the relationship between flow coefficients and shape parameters is crucial for an accurate prediction of leakage flows. The present study investigates the influence of the various dimensionless parameters such as Reynolds number, Mach number, and pressure ratio on the flow coefficients for circular and rectangular clearance shapes. The flow coefficients are determined by comparing the experimental values obtained in an experimental test rig and the flow rates obtained from the isentropic nozzle equation. It is observed that in the case of circular clearances, the mean deviation of the experimental leakage results (in comparison to the analytical results using isotropic nozzle equations) is +9.1%, which is significantly lower than the mean deviation (+20.5%) in the case of rectangular clearance leakages. The study indicates that the isentropic nozzle equation method is more suitable for predicting the leakages through the circular clearances and needs modifications for consideration of the rectangular clearances. Using regression analysis, empirical correlations are developed to predict the flow coefficient in terms of Reynolds number, Mach number, pressure ratio, aspect ratio, and β ratio, which are found to match within ±6.4 percent of the numerical results for the rectangular clearance and within the range of -3.6 percent to +5.1 percent of the numerical result for the circular clearance. The empirical relationships presented in this study can be extended to evaluate the flow coefficients in a positive displacement machine.
正位移机械泄漏试验研究
容积式机械(如压缩机、泵、膨胀机和涡轮机)的间隙间隙对其性能和可靠性至关重要。通过这些间隙的泄漏流影响了机器的体积效率和绝热效率。泄漏流动的程度取决于间隙路径的大小和形状以及这些路径上的压差。通常使用等熵喷嘴方程来估计通过间隙的质量流量,并使用流量系数来校正实际流动条件。然而,所应用的流量系数通常没有考虑这些泄漏路径的形状和大小。因此,正确理解流动系数和形状参数之间的关系对于准确预测泄漏流动至关重要。本文研究了各种无量纲参数如雷诺数、马赫数和压力比对圆形和矩形间隙形状的流动系数的影响。流量系数的确定是通过比较实验装置的实验值和等熵喷嘴方程的流量来实现的。可以观察到,在圆形间隙情况下,实验泄漏结果(与各向同性喷嘴方程的分析结果相比)的平均偏差为+9.1%,显著低于矩形间隙泄漏情况下的平均偏差(+20.5%)。研究表明,等熵喷嘴方程方法更适合于圆形间隙的泄漏预测,需要对矩形间隙进行修正。利用回归分析,建立了经验相关性,以雷诺数、马赫数、压力比、展弦比和β比来预测流量系数,发现矩形间隙的数值结果在±6.4%范围内匹配,圆形间隙的数值结果在- 3.6%至+ 5.1%范围内匹配。本文所提出的经验关系可以推广到计算正位移机的流动系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
10
审稿时长
25 weeks
期刊介绍: This comprehensive journal provides the latest information on rotating machines and machine elements. This technology has become essential to many industrial processes, including gas-, steam-, water-, or wind-driven turbines at power generation systems, and in food processing, automobile and airplane engines, heating, refrigeration, air conditioning, and chemical or petroleum refining. In spite of the importance of rotating machinery and the huge financial resources involved in the industry, only a few publications distribute research and development information on the prime movers. This journal is the first source to combine the technology, as it applies to all of these specialties, previously scattered throughout literature.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信