{"title":"Tailored Centrifugal Turbomachinery for Electric Fuel Cell Turbocharger","authors":"D. Filsinger, G. Kuwata, N. Ikeya","doi":"10.1155/2021/3972387","DOIUrl":"https://doi.org/10.1155/2021/3972387","url":null,"abstract":"Hydrogen fuel cell technology is identified as one option for allowing efficient vehicular propulsion with the least environmental impact on the path to a carbon-free society. Since more than 20 years, IHI is providing charging systems for stationary fuel cell applications and since 2004 for mobile fuel cell applications. The power density of fuel cells substantially increases if the system is pressurized. However, contaminants from fuel cell system components like structural materials, lubricants, adhesives, sealants, and hoses have been shown to affect the performance and durability of fuel cells. Therefore, the charging system that increases the pressure and the power density of the stacks inevitably needs to be oil-free. For this reason, gas bearings are applied to support the rotor of a fuel cell turbocharger. It furthermore comprises a turbine, a compressor, and, on the same shaft, an electric motor. The turbine utilizes the exhaust energy of the stack to support the compressor and hence lower the required electric power of the air supply system. The presented paper provides an overview of the fuel cell turbocharger technology. Detailed performance investigations show that a single-stage compressor with turbine is more efficient compared to a two-stage compressor system with intercooler. The turbine can provide more than 30% of the required compressor power. Hence, it substantially increases the system efficiency. It is also shown that a fixed geometry turbine design is appropriate for most applications. The compressor is of a low specific speed type with a vaneless diffuser. It is optimized for operating conditions of fuel cell systems, which typically require pressure ratios in the range of 3.0.","PeriodicalId":46335,"journal":{"name":"International Journal of Rotating Machinery","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2021-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47763617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Critical Hydraulic Eccentricity Estimation in Vertical Turbine Pump Impeller to Control Vibration","authors":"Ravindra S. Birajdar, A. Keste, S. Gawande","doi":"10.1155/2021/6643282","DOIUrl":"https://doi.org/10.1155/2021/6643282","url":null,"abstract":"In many applications, pumps are tested against standard specifications to define the maximum allowable vibration amplitude limits of a pump. It is essential to identify the causes of vibration and methods to attenuate the same to ensure the safe and satisfactory operation of a pump. Causes of vibration can be classified mainly into mechanical and hydraulic nature. Respective unbalance masses are the two major factors which cause dynamic effects and excitation forces leading to undesirable vibrations. In this paper, the procedure of vibration magnitude measurement of a vertical turbine pump at site and the process of dynamic balancing to measure mechanical unbalance of an impeller are explained. After that, the impact of hydraulic eccentricity on the vibration displacement of a vertical turbine pump has been explained using numerical simulation procedure based on “One-way Fluid Structure Interaction (FSI).” The experimental results from a pump at site are used to compare the numerical results. After the solver validation, the one-way FSI approach is used to find the critical hydraulic eccentricity magnitude of a vertical turbine pump impeller to limit the vibration magnitudes on motor component to less than 100 μm. From the numerical simulations, it is deduced that the critical hydraulic eccentricity should be limited to 400 μm in \u0000 \u0000 X\u0000 \u0000 and \u0000 \u0000 Y\u0000 \u0000 direction. The process can be used as a guideline procedure for limiting the hydraulic unbalance in vertical turbine pumps by limiting the hydraulic eccentricity.","PeriodicalId":46335,"journal":{"name":"International Journal of Rotating Machinery","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2021-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44351695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multisource Fault Signal Separation of Rotating Machinery Based on Wavelet Packet and Fast Independent Component Analysis","authors":"Feng Miao, R. Zhao, L. Jia, Xianli Wang","doi":"10.1155/2021/9914724","DOIUrl":"https://doi.org/10.1155/2021/9914724","url":null,"abstract":"The vibration signal of rotating machinery compound faults acquired in actual fields has the characteristics of complex noise sources, the strong background noise, and the nonlinearity, causing the traditional blind source separation algorithm not be suitable for the blind separation of rotating machinery coupling fault. According to these problems, an extraction method of multisource fault signals based on wavelet packet analysis (WPA) and fast independent component analysis (FastICA) was proposed. Firstly, according to the characteristic of the vibration signal of rotating machinery, an effective denoising method of wavelet packet based on average threshold is presented and described to reduce the vibration signal noise. In the method, the thresholds of every node of the best wavelet packet basis are acquired and averaged, and then the average value is used as a global threshold to quantize the decomposition coefficient of every node. Secondly, the mixed signals were separated by using the improved FastICA algorithm. Finally, the results of simulations and real rotating machinery vibration signals analysis show that the method can extract the rotating machinery fault characteristics, verifying the effectiveness of the proposed algorithm.","PeriodicalId":46335,"journal":{"name":"International Journal of Rotating Machinery","volume":"140 ","pages":"1-17"},"PeriodicalIF":0.9,"publicationDate":"2021-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41281929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Research and Development of a Small-Scale Icing Wind Tunnel Test System for Blade Airfoil Icing Characteristics","authors":"Lei Shi, F. Feng, Wenfeng Guo, Yan Li","doi":"10.1155/2021/5598859","DOIUrl":"https://doi.org/10.1155/2021/5598859","url":null,"abstract":"In order to study the icing mechanism and anti-icing technology, a small low-speed reflux icing wind tunnel test system was designed and constructed. The refrigeration system and spray system were added to the small reflux low-speed wind tunnel to achieve icing meteorological conditions. In order to verify the feasibility of the test system, the flow field uniformity, temperature stability, and liquid water content distribution of the test section were tested and calibrated. On this basis, the icing tests of an aluminium cylinder, an NACA0018 airfoil, and an S809 airfoil were carried out, and the two-dimensional ice shape obtained by the test was compared with the two-dimensional ice shape obtained by the numerical simulation software. The results show that in the icing conditions and icing time studied, the parameters of the test system are stable, and the experimental ice shape is consistent with the simulated ice shape, which can meet the needs of icing research.","PeriodicalId":46335,"journal":{"name":"International Journal of Rotating Machinery","volume":" ","pages":"1-12"},"PeriodicalIF":0.9,"publicationDate":"2021-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46979072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wenchao Zhang, L. Shi, Kaiwen Liu, Lintao Li, Jianning Jing
{"title":"Optimization Analysis of Automotive Asymmetric Magnetic Pole Permanent Magnet Motor by Taguchi Method","authors":"Wenchao Zhang, L. Shi, Kaiwen Liu, Lintao Li, Jianning Jing","doi":"10.1155/2021/6691574","DOIUrl":"https://doi.org/10.1155/2021/6691574","url":null,"abstract":"In order to improve the air-gap flux density of the permanent magnet synchronous motor and reduce the cogging torque, a novel structure with asymmetric magnetic poles for automobile was proposed. Based on the characteristics of the parallel magnetic circuit, the magnetic flux path diagram is established. And the equivalent magnetic circuit model is established by the equivalent magnetic circuit method. The Taguchi method is used to be a multiobjective optimization algorithm. The total harmonic distortion of the air-gap flux density is the first optimization goal. The second and third optimization goals are the cogging torque and the average of output torque, respectively. And the torque ripple is a constraint condition. The optimized parameter combination is obtained by the Taguchi method. Finite element simulation analysis and prototype test are carried out for the optimized motor structure. The results show that the total harmonic distortion of air-gap flux density is reduced by 36.7% comparing with the initial structure. The cogging torque is reduced by 26.0%. And the average output torque is increased by 4.8%.","PeriodicalId":46335,"journal":{"name":"International Journal of Rotating Machinery","volume":"2021 1","pages":"1-9"},"PeriodicalIF":0.9,"publicationDate":"2021-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48622887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study of Groove Parameters on the Hydrodynamic Behavior of Spiral-Grooved Thrust Bearing with Gas Lubricant","authors":"Xianfei Xia, Yu Chen, Xiuying Wang, Yu Sun","doi":"10.1155/2021/5571765","DOIUrl":"https://doi.org/10.1155/2021/5571765","url":null,"abstract":"The gas-lubricated thrust bearing is widely used in agriculture mechanical systems, and the groove shape plays an important role on the hydrodynamic behavior of spiral-grooved thrust bearing (SGTB). Although the groove shape may change smaller, it is clear that the hydrodynamic response is very sensitive to the groove parameters. This paper proposes a computational method for the analysis of SGTB with gas lubricant, considering the effects of groove parameters. With the compressibility taken into account, the evaluation of lubrication performance for SGTB is obtained by the CFD technology. Also, the simulation results are compared with the published data, which indicates that the presented model of SGTB is able to obtain more realistic results of hydrodynamic characteristics of SGTB. Moreover, the mapping relationship between groove parameter and hydrodynamic behavior of SGTB is represented.","PeriodicalId":46335,"journal":{"name":"International Journal of Rotating Machinery","volume":"2021 1","pages":"1-11"},"PeriodicalIF":0.9,"publicationDate":"2021-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44254858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of Static Rotor Eccentricity on End Winding Forces and Vibration Wearing","authors":"Hong-Chun Jiang, Guiji Tang, Yu‐Ling He, Kai Sun, Weijun Li, Lun Cheng","doi":"10.1155/2021/5554914","DOIUrl":"https://doi.org/10.1155/2021/5554914","url":null,"abstract":"In order to study the vibration wearing regularity and the strength failure point of stator end windings before and after static rotor eccentricity, the three-dimensional electromagnetic forces and the subsequent mechanical responses are studied in this paper. The electromagnetic force, stress, and deformation on the end winding of the QFSN-600-2YHG turbo-generator are calculated by the finite element method (FEM) through an electromagnetic-structure coupling. The radial vibration characteristics of the winding are verified by experiments. It shows that the vibration wearing in the same layer is more serious than that between two neighboring layers. For different layers, the interphase coils endure a larger wearing risk than the innerphase coils. Inside the same phase, the last coil along the rotating direction has the highest risk of insulation wearing. The occurrence of static rotor eccentricity will significantly increase the electromagnetic forces and the vibration amplitudes on some coils. The end-phase coil which is close to the minimum air-gap point is the most dangerous one due to the lasting overstresses and the intensified deformations.","PeriodicalId":46335,"journal":{"name":"International Journal of Rotating Machinery","volume":"2021 1","pages":"1-14"},"PeriodicalIF":0.9,"publicationDate":"2021-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46107362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Assessment of Equipment Operation State with Improved Random Forest","authors":"Na Yang, Shenghua Liu, Jie Liu, Changjie Li","doi":"10.1155/2021/8813443","DOIUrl":"https://doi.org/10.1155/2021/8813443","url":null,"abstract":"To accurately assess the state of a generator in wind turbines and find abnormalities in time, the method based on improved random forest (IRF) is proposed. The balancing strategy that is a combination of oversampling technique (SMOTE) and undersampling is applied for imbalanced data. Bootstrap is applied to resample original data sets of generator side from the supervisory control and data acquisition (SCADA) system, and decision trees are generated. After the decision trees with different classification capabilities are weighted, an IRF model is established. The accuracy and performance of the model are based on 10-fold cross-validation and confusion matrix. The 60 testing sets are assessed, and the accuracy is 95.67%. It is more than 1.67% higher than traditional classifiers. The probabilities of 60 data sets at each class are calculated, and the corresponding state class is determined. The results show that the proposed IRF has higher accuracy, and the state can be assessed effectively. The method has a good application prospect in the state assessment of wind power equipment.","PeriodicalId":46335,"journal":{"name":"International Journal of Rotating Machinery","volume":"2021 1","pages":"1-10"},"PeriodicalIF":0.9,"publicationDate":"2021-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44839716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Air Lubrication Behavior of a Kingsbury Thrust Bearing Demonstration","authors":"Wanjun Xu, Jiangang Yang","doi":"10.1155/2021/6690479","DOIUrl":"https://doi.org/10.1155/2021/6690479","url":null,"abstract":"In order to understand the air lubrication behavior of Kingsbury thrust bearing demonstration, an experimental and theoretical investigation on a simulated Kingsbury thrust bearing was presented. The motions of the thrust disk and tilting pads were measured by eddy current sensors for three mass load cases. A simplified theoretical model governing the motion of the thrust disk was established. The bearing successfully passed the examination of lamp extinction and maintained the maximum rotation time of 16 s. The effective hydrodynamic film with a thickness of about 5 μm was concentrated on the middle region of the working surface under a flatness of 0.010 mm. The adverse effect of the three surface bumps was minimized by the swing motion of tilting pads. Moreover, about 1/3 air film thickness was shown to be wasted due to the surface irregularity. However, the requirements of surface quality and misalignment were appropriately relaxed through the design of the centrally pivoted tilting pads. This design is conducive to thin-film lubrication and is a potential application for microturbines.","PeriodicalId":46335,"journal":{"name":"International Journal of Rotating Machinery","volume":" ","pages":"1-10"},"PeriodicalIF":0.9,"publicationDate":"2021-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46793421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jonna Tiainen, Ahti Jaatinen-Värri, A. Grönman, P. Sallinen, J. Honkatukia, T. Hartikainen
{"title":"Validation of the Axial Thrust Estimation Method for Radial Turbomachines","authors":"Jonna Tiainen, Ahti Jaatinen-Värri, A. Grönman, P. Sallinen, J. Honkatukia, T. Hartikainen","doi":"10.1155/2021/6669193","DOIUrl":"https://doi.org/10.1155/2021/6669193","url":null,"abstract":"The fast preliminary design and safe operation of turbomachines require a simple and accurate prediction of axial thrust. An underestimation of these forces may result in undersized bearings that can easily overload and suffer damage. While large safety margins are used in bearing design to avoid overloading, this leads to costly oversizing. In this study, the accuracy of currently available axial thrust estimation methods is analyzed by comparing them to each other and to theoretical pressure distribution, numerical simulations, and new experimental data. Available methods tend to underestimate the maximum axial thrust and require data that are unavailable during the preliminary design of turbomachines. This paper presents a new, simple axial thrust estimation method that requires only a few preliminary design parameters as the input data and combines the advantages of previously published methods, resulting in a more accurate axial thrust estimation. The method is validated against previously public data from a radial pump and new experimental data from a centrifugal compressor, the latter measured at Lappeenranta-Lahti University of Technology LUT, Finland, and two gas turbines measured at Aurelia Turbines Oy, Finland. The maximum deviation between the estimated axial thrust using the hybrid method and the measured one is less than 13%, while the other methods deviate by tens of percent.","PeriodicalId":46335,"journal":{"name":"International Journal of Rotating Machinery","volume":"2021 1","pages":"1-18"},"PeriodicalIF":0.9,"publicationDate":"2021-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47137297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}