{"title":"Assessment of Equipment Operation State with Improved Random Forest","authors":"Na Yang, Shenghua Liu, Jie Liu, Changjie Li","doi":"10.1155/2021/8813443","DOIUrl":null,"url":null,"abstract":"To accurately assess the state of a generator in wind turbines and find abnormalities in time, the method based on improved random forest (IRF) is proposed. The balancing strategy that is a combination of oversampling technique (SMOTE) and undersampling is applied for imbalanced data. Bootstrap is applied to resample original data sets of generator side from the supervisory control and data acquisition (SCADA) system, and decision trees are generated. After the decision trees with different classification capabilities are weighted, an IRF model is established. The accuracy and performance of the model are based on 10-fold cross-validation and confusion matrix. The 60 testing sets are assessed, and the accuracy is 95.67%. It is more than 1.67% higher than traditional classifiers. The probabilities of 60 data sets at each class are calculated, and the corresponding state class is determined. The results show that the proposed IRF has higher accuracy, and the state can be assessed effectively. The method has a good application prospect in the state assessment of wind power equipment.","PeriodicalId":46335,"journal":{"name":"International Journal of Rotating Machinery","volume":"2021 1","pages":"1-10"},"PeriodicalIF":0.9000,"publicationDate":"2021-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Rotating Machinery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2021/8813443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 3
Abstract
To accurately assess the state of a generator in wind turbines and find abnormalities in time, the method based on improved random forest (IRF) is proposed. The balancing strategy that is a combination of oversampling technique (SMOTE) and undersampling is applied for imbalanced data. Bootstrap is applied to resample original data sets of generator side from the supervisory control and data acquisition (SCADA) system, and decision trees are generated. After the decision trees with different classification capabilities are weighted, an IRF model is established. The accuracy and performance of the model are based on 10-fold cross-validation and confusion matrix. The 60 testing sets are assessed, and the accuracy is 95.67%. It is more than 1.67% higher than traditional classifiers. The probabilities of 60 data sets at each class are calculated, and the corresponding state class is determined. The results show that the proposed IRF has higher accuracy, and the state can be assessed effectively. The method has a good application prospect in the state assessment of wind power equipment.
期刊介绍:
This comprehensive journal provides the latest information on rotating machines and machine elements. This technology has become essential to many industrial processes, including gas-, steam-, water-, or wind-driven turbines at power generation systems, and in food processing, automobile and airplane engines, heating, refrigeration, air conditioning, and chemical or petroleum refining. In spite of the importance of rotating machinery and the huge financial resources involved in the industry, only a few publications distribute research and development information on the prime movers. This journal is the first source to combine the technology, as it applies to all of these specialties, previously scattered throughout literature.