{"title":"Replay attack detection based on deformable convolutional neural network and temporal-frequency attention model","authors":"Dang-en Xie, Hai Hu, Qiang Xu","doi":"10.1515/jisys-2022-0265","DOIUrl":"https://doi.org/10.1515/jisys-2022-0265","url":null,"abstract":"Abstract As an important identity authentication method, speaker verification (SV) has been widely used in many domains, e.g., mobile financials. At the same time, the existing SV systems are insecure under replay spoofing attacks. Toward a more secure and stable SV system, this article proposes a replay attack detection system based on deformable convolutional neural networks (DCNNs) and a time–frequency double-channel attention model. In DCNN, the positions of elements in the convolutional kernel are not fixed. Instead, they are modified by some trainable variable to help the model extract more useful local information from input spectrograms. Meanwhile, a time–frequency domino double-channel attention model is adopted to extract more effective distinctive features to collect valuable information for distinguishing genuine and replay speeches. Experimental results on ASVspoof 2019 dataset show that the proposed model can detect replay attacks accurately.","PeriodicalId":46139,"journal":{"name":"Journal of Intelligent Systems","volume":"23 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82168853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Y. A. A. S. Aldeen, S. Kadhim, N. N. Kadhim, Syed Hamid Hussain Madni
{"title":"A novel distance vector hop localization method for wireless sensor networks","authors":"Y. A. A. S. Aldeen, S. Kadhim, N. N. Kadhim, Syed Hamid Hussain Madni","doi":"10.1515/jisys-2023-0031","DOIUrl":"https://doi.org/10.1515/jisys-2023-0031","url":null,"abstract":"Abstract Wireless sensor networks (WSNs) require accurate localization of sensor nodes for various applications. In this article, we propose the distance vector hop localization method (DVHLM) to address the node dislocation issue in real-time networks. The proposed method combines trilateration and Particle Swarm Optimization techniques to estimate the location of unknown or dislocated nodes. Our methodology includes four steps: coordinate calculation, distance calculation, unknown node position estimation, and estimation correction. To evaluate the proposed method, we conducted simulation experiments and compared its performance with state-of-the-art methods in terms of localization accuracy with known nodes, dislocated nodes, and shadowing effects. Our results demonstrate that DVHLM outperforms the existing methods and achieves better localization accuracy with reduced error. This article provides a valuable contribution to the field of WSNs by proposing a new method with a detailed methodology and superior performance.","PeriodicalId":46139,"journal":{"name":"Journal of Intelligent Systems","volume":"235 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75572195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"RES-KELM fusion model based on non-iterative deterministic learning classifier for classification of Covid19 chest X-ray images","authors":"Arshi Husain, Virendra P. Vishvakarma","doi":"10.1515/jisys-2022-0235","DOIUrl":"https://doi.org/10.1515/jisys-2022-0235","url":null,"abstract":"Abstract In this research, a novel real time approach has been proposed for detection and analysis of Covid19 using chest X-ray images based on a non-iterative deterministic classifier, kernel extreme learning machine (KELM), and a pretrained network ResNet50. The information extraction capability of deep learning and non-iterative deterministic training nature of KELM has been incorporated in the proposed novel fusion model. The binary classification is carried out with a non-iterative deterministic learning based classifier, KELM. Our proposed approach is able to minimize the average testing error up to 2.76 on first dataset, and up to 0.79 on the second one, demonstrating its effectiveness after experimental confirmation. A comparative analysis of the approach with other existing state-of-the-art methods is also presented in this research and the classification performance confirm the advantages and superiority of our novel approach called RES-KELM algorithm.","PeriodicalId":46139,"journal":{"name":"Journal of Intelligent Systems","volume":"59 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83168299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Md. Mehedi Hasan, Noor Afiza Mohd Ariffin, N. F. M. Sani
{"title":"Efficient mutual authentication using Kerberos for resource constraint smart meter in advanced metering infrastructure","authors":"Md. Mehedi Hasan, Noor Afiza Mohd Ariffin, N. F. M. Sani","doi":"10.1515/jisys-2021-0095","DOIUrl":"https://doi.org/10.1515/jisys-2021-0095","url":null,"abstract":"Abstract The continuous development of information communication technology facilitates the conventional grid in transforming into an automated modern system. Internet-of-Things solutions are used along with the evolving services of end-users to the electricity service provider for smart grid applications. In terms of various devices and machine integration, adequate authentication is the key to an accurate source and destination in advanced metering infrastructure (AMI). Various protocols are deployed to lead the identification between two parties, which require high computation time and communicational bit operations for system development. Therefore, Kerberos-based authentication protocols were designed in this study with the assistance of elliptic curve cryptography to manage the mutual authentication between two parties and reduce the time and bit operations. The protocols were evaluated in a widely adopted tool, AVISPA, which builds an understanding of the proposed protocol and ensures mutual authentication without unauthorized knowledge. In addition, upon comparing security and performance assessments to the current schemes, it was found that the protocol in this study required less time and bits to transmit information. Consequently, it effectively provides multiple security features making it suitable for resource constraint smart meters in AMI.","PeriodicalId":46139,"journal":{"name":"Journal of Intelligent Systems","volume":"15 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89426552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"PUC: parallel mining of high-utility itemsets with load balancing on spark","authors":"Anup Brahmavar, H. Venkatarama, Geetha Maiya","doi":"10.1515/jisys-2022-0044","DOIUrl":"https://doi.org/10.1515/jisys-2022-0044","url":null,"abstract":"Abstract Distributed programming paradigms such as MapReduce and Spark have alleviated sequential bottleneck while mining of massive transaction databases. Of significant importance is mining High Utility Itemset (HUI) that incorporates the revenue of the items purchased in a transaction. Although a few algorithms to mine HUIs in the distributed environment exist, workload skew and data transfer overhead due to shuffling operations remain major issues. In the current study, Parallel Utility Computation (PUC) algorithm has been proposed with novel grouping and load balancing strategies for an efficient mining of HUIs in a distributed environment. To group the items, Transaction Weighted Utility (TWU) values as a degree of transaction similarity is employed. Subsequently, these groups are assigned to the nodes across the cluster by taking into account the mining load due to the items in the group. Experimental evaluation on real and synthetic datasets demonstrate that PUC with TWU grouping in conjunction with load balancing converges mining faster. Due to reduced data transfer, and load balancing-based assignment strategy, PUC outperforms different grouping strategies and random assignment of groups across the cluster. Also, PUC is shown to be faster than PHUI-Growth algorithm with a promising speedup.","PeriodicalId":46139,"journal":{"name":"Journal of Intelligent Systems","volume":"18 1","pages":"568 - 588"},"PeriodicalIF":3.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88493013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Masking and noise reduction processing of music signals in reverberant music","authors":"Shenghuan Zhang, Ye Cheng","doi":"10.1515/jisys-2022-0024","DOIUrl":"https://doi.org/10.1515/jisys-2022-0024","url":null,"abstract":"Abstract Noise will be inevitably mixed with music signals in the recording process. To improve the quality of music signals, it is necessary to reduce noise as much as possible. This article briefly introduces noise, the masking effect, and the spectral subtraction method for reducing noise in reverberant music. The spectral subtraction method was improved by the human ear masking effect to enhance its noise reduction performance. Simulation experiments were carried out on the traditional and improved spectral subtraction methods. The results showed that the improved spectral subtraction method could reduce the noise in reverberant music more effectively; under an objective evaluation criterion, the signal-to-noise ratio, the de-reverberated music signal processed by the improved spectral subtraction method had a higher signal-to-noise ratio; under a subjective evaluation criterion, mean opinion score (MOS), the de-reverberated music signal processed by the improved spectral subtraction method also had a better evaluation.","PeriodicalId":46139,"journal":{"name":"Journal of Intelligent Systems","volume":"22 1","pages":"420 - 427"},"PeriodicalIF":3.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89062788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Face recognition algorithm based on stack denoising and self-encoding LBP","authors":"Yan-sheng Lu, Mudassir Khan, Mohd Dilshad Ansari","doi":"10.1515/jisys-2022-0011","DOIUrl":"https://doi.org/10.1515/jisys-2022-0011","url":null,"abstract":"Abstract To optimize the weak robustness of traditional face recognition algorithms, the classification accuracy rate is not high, the operation speed is slower, so a face recognition algorithm based on local binary pattern (LBP) and stacked autoencoder (AE) is proposed. The advantage of LBP texture structure feature of the face image as the initial feature of sparse autoencoder (SAE) learning, use the unified mode LBP operator to extract the histogram of the blocked face image, connect to form the LBP features of the entire image. It is used as input of the stacked AE, feature extraction is done, realize the recognition and classification of face images. Experimental results show that the recognition rate of the algorithm LBP-SAE on the Yale database has achieved 99.05%, and it further shows that the algorithm has a higher recognition rate than the classic face recognition algorithm; it has strong robustness to light changes. Experimental results on the Olivetti Research Laboratory library shows that the developed method is more robust to light changes and has better recognition effects compared to traditional face recognition algorithms and standard stack AEs.","PeriodicalId":46139,"journal":{"name":"Journal of Intelligent Systems","volume":"10 1","pages":"501 - 510"},"PeriodicalIF":3.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73321286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Salim, Wisam K. Jummar, Farah Maath Jasim, Mohammed S. Yousif
{"title":"Eurasian oystercatcher optimiser: New meta-heuristic algorithm","authors":"A. Salim, Wisam K. Jummar, Farah Maath Jasim, Mohammed S. Yousif","doi":"10.1515/jisys-2022-0017","DOIUrl":"https://doi.org/10.1515/jisys-2022-0017","url":null,"abstract":"Abstract Modern optimisation is increasingly relying on meta-heuristic methods. This study presents a new meta-heuristic optimisation algorithm called Eurasian oystercatcher optimiser (EOO). The EOO algorithm mimics food behaviour of Eurasian oystercatcher (EO) in searching for mussels. In EOO, each bird (solution) in the population acts as a search agent. The EO changes the candidate mussel according to the best solutions to finally eat the best mussel (optimal result). A balance must be achieved among the size, calories, and energy of mussels. The proposed algorithm is benchmarked on 58 test functions of three phases (unimodal, multimodal, and fixed-diminution multimodal) and compared with several important algorithms as follows: particle swarm optimiser, grey wolf optimiser, biogeography based optimisation, gravitational search algorithm, and artificial bee colony. Finally, the results of the test functions prove that the proposed algorithm is able to provide very competitive results in terms of improved exploration and exploitation balances and local optima avoidance.","PeriodicalId":46139,"journal":{"name":"Journal of Intelligent Systems","volume":"107 1","pages":"332 - 344"},"PeriodicalIF":3.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76831424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Interactive 3D reconstruction method of fuzzy static images in social media","authors":"Xiaomei Niu","doi":"10.1515/jisys-2022-0049","DOIUrl":"https://doi.org/10.1515/jisys-2022-0049","url":null,"abstract":"Abstract Because the traditional social media fuzzy static image interactive three-dimensional (3D) reconstruction method has the problem of poor reconstruction completeness and long reconstruction time, the social media fuzzy static image interactive 3D reconstruction method is proposed. For preprocessing the fuzzy static image of social media, the Harris corner detection method is used to extract the feature points of the preprocessed fuzzy static image of social media. According to the extraction results, the parameter estimation algorithm of contrast divergence is used to learn the restricted Boltzmann machine (RBM) network model, and the RBM network model is divided into input, output, and hidden layers. By combining the RBM-based joint dictionary learning method and a sparse representation model, an interactive 3D reconstruction of fuzzy static images in social media is achieved. Experimental results based on the CAD software show that the proposed method has a reconstruction completeness of above 95% and the reconstruction time is less than 15 s, improving the completeness and efficiency of the reconstruction, effectively reconstructing the fuzzy static images in social media, and increasing the sense of reality of social media images.","PeriodicalId":46139,"journal":{"name":"Journal of Intelligent Systems","volume":"94 1","pages":"806 - 816"},"PeriodicalIF":3.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83909130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Iot-based power detection equipment management and control system","authors":"Jintao Chen, Jianfeng Jiang, Binruo Zhu","doi":"10.1515/jisys-2022-0127","DOIUrl":"https://doi.org/10.1515/jisys-2022-0127","url":null,"abstract":"Abstract The development and application scope of the Internet of Things is also becoming more and more extensive. Especially in the application of power testing improved systems, great progress has been made. This article aims to study how to analyze the system detection equipment based on the Internet of Things. This article describes the basic theoretical knowledge of the Internet of Things and power detection improved systems. A clustering analysis algorithm and a support vector machine algorithm based on the Internet of Things are proposed. In the experiment of this article, the scoring items of the expert’s traditional detection system include complex technology, inconvenient use, and incomplete intelligence. Among them, the highest score for complex technology is 8.6 points, the lowest score is 7 points; the highest score for inconvenience is 8.6 points, and the lowest is 8.3 points. It can be seen that related experts believe that the traditional power detection improved system is not only very complicated in technology, very inconvenient to use but also incompletely intelligent. Therefore, it is very necessary to study the system detection equipment based on the Internet of Things.","PeriodicalId":46139,"journal":{"name":"Journal of Intelligent Systems","volume":"281 1","pages":"1229 - 1245"},"PeriodicalIF":3.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74979709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}