PUC:基于spark负载均衡的高效用项集并行挖掘

IF 2.1 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Anup Brahmavar, H. Venkatarama, Geetha Maiya
{"title":"PUC:基于spark负载均衡的高效用项集并行挖掘","authors":"Anup Brahmavar, H. Venkatarama, Geetha Maiya","doi":"10.1515/jisys-2022-0044","DOIUrl":null,"url":null,"abstract":"Abstract Distributed programming paradigms such as MapReduce and Spark have alleviated sequential bottleneck while mining of massive transaction databases. Of significant importance is mining High Utility Itemset (HUI) that incorporates the revenue of the items purchased in a transaction. Although a few algorithms to mine HUIs in the distributed environment exist, workload skew and data transfer overhead due to shuffling operations remain major issues. In the current study, Parallel Utility Computation (PUC) algorithm has been proposed with novel grouping and load balancing strategies for an efficient mining of HUIs in a distributed environment. To group the items, Transaction Weighted Utility (TWU) values as a degree of transaction similarity is employed. Subsequently, these groups are assigned to the nodes across the cluster by taking into account the mining load due to the items in the group. Experimental evaluation on real and synthetic datasets demonstrate that PUC with TWU grouping in conjunction with load balancing converges mining faster. Due to reduced data transfer, and load balancing-based assignment strategy, PUC outperforms different grouping strategies and random assignment of groups across the cluster. Also, PUC is shown to be faster than PHUI-Growth algorithm with a promising speedup.","PeriodicalId":46139,"journal":{"name":"Journal of Intelligent Systems","volume":"18 1","pages":"568 - 588"},"PeriodicalIF":2.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PUC: parallel mining of high-utility itemsets with load balancing on spark\",\"authors\":\"Anup Brahmavar, H. Venkatarama, Geetha Maiya\",\"doi\":\"10.1515/jisys-2022-0044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Distributed programming paradigms such as MapReduce and Spark have alleviated sequential bottleneck while mining of massive transaction databases. Of significant importance is mining High Utility Itemset (HUI) that incorporates the revenue of the items purchased in a transaction. Although a few algorithms to mine HUIs in the distributed environment exist, workload skew and data transfer overhead due to shuffling operations remain major issues. In the current study, Parallel Utility Computation (PUC) algorithm has been proposed with novel grouping and load balancing strategies for an efficient mining of HUIs in a distributed environment. To group the items, Transaction Weighted Utility (TWU) values as a degree of transaction similarity is employed. Subsequently, these groups are assigned to the nodes across the cluster by taking into account the mining load due to the items in the group. Experimental evaluation on real and synthetic datasets demonstrate that PUC with TWU grouping in conjunction with load balancing converges mining faster. Due to reduced data transfer, and load balancing-based assignment strategy, PUC outperforms different grouping strategies and random assignment of groups across the cluster. Also, PUC is shown to be faster than PHUI-Growth algorithm with a promising speedup.\",\"PeriodicalId\":46139,\"journal\":{\"name\":\"Journal of Intelligent Systems\",\"volume\":\"18 1\",\"pages\":\"568 - 588\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jisys-2022-0044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jisys-2022-0044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

MapReduce和Spark等分布式编程范式缓解了海量事务数据库挖掘时的顺序瓶颈。非常重要的是挖掘高效用项目集(HUI),它包含了交易中购买的项目的收入。尽管存在一些在分布式环境中挖掘hui的算法,但由于变换操作导致的工作负载倾斜和数据传输开销仍然是主要问题。为了在分布式环境下高效地挖掘hui,提出了并行效用计算(PUC)算法,并采用了新颖的分组和负载均衡策略。为了对项目进行分组,使用事务加权效用(TWU)值作为事务相似度。随后,通过考虑组中项目的挖掘负载,将这些组分配给集群中的节点。在真实数据集和合成数据集上进行的实验评估表明,结合负载均衡的TWU分组PUC可以更快地收敛挖掘。由于减少了数据传输和基于负载均衡的分配策略,PUC优于不同的分组策略和跨集群随机分配组。此外,PUC被证明比PHUI-Growth算法更快,并且具有很好的加速效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PUC: parallel mining of high-utility itemsets with load balancing on spark
Abstract Distributed programming paradigms such as MapReduce and Spark have alleviated sequential bottleneck while mining of massive transaction databases. Of significant importance is mining High Utility Itemset (HUI) that incorporates the revenue of the items purchased in a transaction. Although a few algorithms to mine HUIs in the distributed environment exist, workload skew and data transfer overhead due to shuffling operations remain major issues. In the current study, Parallel Utility Computation (PUC) algorithm has been proposed with novel grouping and load balancing strategies for an efficient mining of HUIs in a distributed environment. To group the items, Transaction Weighted Utility (TWU) values as a degree of transaction similarity is employed. Subsequently, these groups are assigned to the nodes across the cluster by taking into account the mining load due to the items in the group. Experimental evaluation on real and synthetic datasets demonstrate that PUC with TWU grouping in conjunction with load balancing converges mining faster. Due to reduced data transfer, and load balancing-based assignment strategy, PUC outperforms different grouping strategies and random assignment of groups across the cluster. Also, PUC is shown to be faster than PHUI-Growth algorithm with a promising speedup.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Intelligent Systems
Journal of Intelligent Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
5.90
自引率
3.30%
发文量
77
审稿时长
51 weeks
期刊介绍: The Journal of Intelligent Systems aims to provide research and review papers, as well as Brief Communications at an interdisciplinary level, with the field of intelligent systems providing the focal point. This field includes areas like artificial intelligence, models and computational theories of human cognition, perception and motivation; brain models, artificial neural nets and neural computing. It covers contributions from the social, human and computer sciences to the analysis and application of information technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信