Md. Mehedi Hasan, Noor Afiza Mohd Ariffin, N. F. M. Sani
{"title":"Efficient mutual authentication using Kerberos for resource constraint smart meter in advanced metering infrastructure","authors":"Md. Mehedi Hasan, Noor Afiza Mohd Ariffin, N. F. M. Sani","doi":"10.1515/jisys-2021-0095","DOIUrl":null,"url":null,"abstract":"Abstract The continuous development of information communication technology facilitates the conventional grid in transforming into an automated modern system. Internet-of-Things solutions are used along with the evolving services of end-users to the electricity service provider for smart grid applications. In terms of various devices and machine integration, adequate authentication is the key to an accurate source and destination in advanced metering infrastructure (AMI). Various protocols are deployed to lead the identification between two parties, which require high computation time and communicational bit operations for system development. Therefore, Kerberos-based authentication protocols were designed in this study with the assistance of elliptic curve cryptography to manage the mutual authentication between two parties and reduce the time and bit operations. The protocols were evaluated in a widely adopted tool, AVISPA, which builds an understanding of the proposed protocol and ensures mutual authentication without unauthorized knowledge. In addition, upon comparing security and performance assessments to the current schemes, it was found that the protocol in this study required less time and bits to transmit information. Consequently, it effectively provides multiple security features making it suitable for resource constraint smart meters in AMI.","PeriodicalId":46139,"journal":{"name":"Journal of Intelligent Systems","volume":"15 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jisys-2021-0095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract The continuous development of information communication technology facilitates the conventional grid in transforming into an automated modern system. Internet-of-Things solutions are used along with the evolving services of end-users to the electricity service provider for smart grid applications. In terms of various devices and machine integration, adequate authentication is the key to an accurate source and destination in advanced metering infrastructure (AMI). Various protocols are deployed to lead the identification between two parties, which require high computation time and communicational bit operations for system development. Therefore, Kerberos-based authentication protocols were designed in this study with the assistance of elliptic curve cryptography to manage the mutual authentication between two parties and reduce the time and bit operations. The protocols were evaluated in a widely adopted tool, AVISPA, which builds an understanding of the proposed protocol and ensures mutual authentication without unauthorized knowledge. In addition, upon comparing security and performance assessments to the current schemes, it was found that the protocol in this study required less time and bits to transmit information. Consequently, it effectively provides multiple security features making it suitable for resource constraint smart meters in AMI.
期刊介绍:
The Journal of Intelligent Systems aims to provide research and review papers, as well as Brief Communications at an interdisciplinary level, with the field of intelligent systems providing the focal point. This field includes areas like artificial intelligence, models and computational theories of human cognition, perception and motivation; brain models, artificial neural nets and neural computing. It covers contributions from the social, human and computer sciences to the analysis and application of information technology.