A. Salim, Wisam K. Jummar, Farah Maath Jasim, Mohammed S. Yousif
{"title":"Eurasian oystercatcher optimiser: New meta-heuristic algorithm","authors":"A. Salim, Wisam K. Jummar, Farah Maath Jasim, Mohammed S. Yousif","doi":"10.1515/jisys-2022-0017","DOIUrl":null,"url":null,"abstract":"Abstract Modern optimisation is increasingly relying on meta-heuristic methods. This study presents a new meta-heuristic optimisation algorithm called Eurasian oystercatcher optimiser (EOO). The EOO algorithm mimics food behaviour of Eurasian oystercatcher (EO) in searching for mussels. In EOO, each bird (solution) in the population acts as a search agent. The EO changes the candidate mussel according to the best solutions to finally eat the best mussel (optimal result). A balance must be achieved among the size, calories, and energy of mussels. The proposed algorithm is benchmarked on 58 test functions of three phases (unimodal, multimodal, and fixed-diminution multimodal) and compared with several important algorithms as follows: particle swarm optimiser, grey wolf optimiser, biogeography based optimisation, gravitational search algorithm, and artificial bee colony. Finally, the results of the test functions prove that the proposed algorithm is able to provide very competitive results in terms of improved exploration and exploitation balances and local optima avoidance.","PeriodicalId":46139,"journal":{"name":"Journal of Intelligent Systems","volume":"107 1","pages":"332 - 344"},"PeriodicalIF":2.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jisys-2022-0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 6
Abstract
Abstract Modern optimisation is increasingly relying on meta-heuristic methods. This study presents a new meta-heuristic optimisation algorithm called Eurasian oystercatcher optimiser (EOO). The EOO algorithm mimics food behaviour of Eurasian oystercatcher (EO) in searching for mussels. In EOO, each bird (solution) in the population acts as a search agent. The EO changes the candidate mussel according to the best solutions to finally eat the best mussel (optimal result). A balance must be achieved among the size, calories, and energy of mussels. The proposed algorithm is benchmarked on 58 test functions of three phases (unimodal, multimodal, and fixed-diminution multimodal) and compared with several important algorithms as follows: particle swarm optimiser, grey wolf optimiser, biogeography based optimisation, gravitational search algorithm, and artificial bee colony. Finally, the results of the test functions prove that the proposed algorithm is able to provide very competitive results in terms of improved exploration and exploitation balances and local optima avoidance.
期刊介绍:
The Journal of Intelligent Systems aims to provide research and review papers, as well as Brief Communications at an interdisciplinary level, with the field of intelligent systems providing the focal point. This field includes areas like artificial intelligence, models and computational theories of human cognition, perception and motivation; brain models, artificial neural nets and neural computing. It covers contributions from the social, human and computer sciences to the analysis and application of information technology.