Advanced Optical Technologies最新文献

筛选
英文 中文
Novel procedure for the identification of a starting point for the CMP 确定CMP起始点的新程序
IF 1.8
Advanced Optical Technologies Pub Date : 2022-10-21 DOI: 10.1515/aot-2022-0022
C. Trum, Sebastian Sitzberger, R. Rascher
{"title":"Novel procedure for the identification of a starting point for the CMP","authors":"C. Trum, Sebastian Sitzberger, R. Rascher","doi":"10.1515/aot-2022-0022","DOIUrl":"https://doi.org/10.1515/aot-2022-0022","url":null,"abstract":"Abstract In the field of precision optics, more and more glass materials that are difficult to machine are being used because of their interesting optical properties. At the same time, the geometries are getting more demanding and the tolerances to be achieved are tighter. The establishment of an efficient process chain is therefore becoming an ever-greater challenge. Particularly in the field of CMP, knowledge of the machining properties of pads and slurries are required to design efficient processes. This knowledge has to be gained through time-consuming in-house tests, as the manufacturers of the consumables are usually only able to provide basic data. In addition, the boundary conditions under which the data were collected are often incomplete defined and thus not comparable. The novel methodical procedure presented here for the initial design of CMP processes is based on a standardized procedure for carrying out the tests. From the resulting database, a starting point for the design of own processes can be identified quickly and unerringly. This article describes the structure of the procedure as well as the necessary background. In addition, the visualization and the procedure for selecting start parameters are discussed using an example application.","PeriodicalId":46010,"journal":{"name":"Advanced Optical Technologies","volume":"11 1","pages":"205 - 213"},"PeriodicalIF":1.8,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43022068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EOS annual meeting EOSAM 2022 EOS年会EOSAM 2022
IF 1.8
Advanced Optical Technologies Pub Date : 2022-10-12 DOI: 10.1515/aot-2022-0036
Julia S. Kroisamer, F. Felberer, T. Klein, D. C. Adler, F. Trépanier, C. Eigenwillig, S. Karpf, J. M. Schmitt, R. Huber
{"title":"EOS annual meeting EOSAM 2022","authors":"Julia S. Kroisamer, F. Felberer, T. Klein, D. C. Adler, F. Trépanier, C. Eigenwillig, S. Karpf, J. M. Schmitt, R. Huber","doi":"10.1515/aot-2022-0036","DOIUrl":"https://doi.org/10.1515/aot-2022-0036","url":null,"abstract":"","PeriodicalId":46010,"journal":{"name":"Advanced Optical Technologies","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49393669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ellipsometry study of the infrared-active phonon modes in strained SrMnO3 thin films 应变SrMnO3薄膜中红外有源声子模式的椭偏研究
IF 1.8
Advanced Optical Technologies Pub Date : 2022-08-18 DOI: 10.1515/aot-2022-0009
P. Marsik, R. de Andrés Prada, Andreana Daniil, C. Bernhard
{"title":"Ellipsometry study of the infrared-active phonon modes in strained SrMnO3 thin films","authors":"P. Marsik, R. de Andrés Prada, Andreana Daniil, C. Bernhard","doi":"10.1515/aot-2022-0009","DOIUrl":"https://doi.org/10.1515/aot-2022-0009","url":null,"abstract":"Abstract We performed infrared and time-domain terahertz spectroscopic ellipsometry measurements of thin films of the perovskite antiferromagnetic insulator SrMnO3 that were grown by pulsed laser deposition (PLD) on LaAlO3, SrLaGaO4, and LSAT substrates which yield an epitaxial strain ranging from −0.3 to 1.7%. Taking these thin films as a representative example, we discuss the strategies for analyzing the ellipsometry spectra and extracting the information about the thin film dielectric response that can be equally applied to a variety of oxide based thin films and heterostructures. In particular, for the room temperature spectra we show that the three infrared-active phonon modes of the cubic perovskite structure of SrMnO3 undergo the expected softening with increasing tensile strain. For the SrMnO3 film on SrLaGaO4, we find that the low-energy (TO1) phonon mode reveals anomalous temperature dependence in the vicinity of the Néel temperature of about 170 K that signifies a strong spin-phonon coupling. For the SrMnO3 film on LSAT, we identify some irreversible changes of the infrared ellipsometry spectra that occur as the sample is heated to elevated temperature up to 560 K. These changes of the ellipsometry spectra have been attributed to a partial oxygen loss of the SrMnO3 thin film since they can be reverted with a post annealing treatment under high oxygen pressure.","PeriodicalId":46010,"journal":{"name":"Advanced Optical Technologies","volume":"11 1","pages":"179 - 190"},"PeriodicalIF":1.8,"publicationDate":"2022-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48705285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Combination of a global-search method with model selection criteria for the ellipsometric data evaluation of DLC coatings DLC涂层椭圆数据评估的全局搜索方法与模型选择标准的结合
IF 1.8
Advanced Optical Technologies Pub Date : 2022-07-18 DOI: 10.1515/aot-2022-0014
K. Dorywalski, O. Lupicka, M. Grundmann, C. Sturm
{"title":"Combination of a global-search method with model selection criteria for the ellipsometric data evaluation of DLC coatings","authors":"K. Dorywalski, O. Lupicka, M. Grundmann, C. Sturm","doi":"10.1515/aot-2022-0014","DOIUrl":"https://doi.org/10.1515/aot-2022-0014","url":null,"abstract":"Abstract A method for the evaluation of experimental data from spectroscopic ellipsometry is proposed which combines the global-search optimization algorithm with statistical model selection criteria. The hybrid genetic-gradient search algorithm (HGGA) is applied to find the optical parameters and thickness of a diamond-like carbon (DLC) coating deposited on SW7M stainless steel. Akaike and Bayesian information criteria are used to evaluate the different dielectric function models. The method is able to find optical model parameters even in case of a limited initial knowledge about the material optical constants. At the same time, the optimal dielectric function model for the description of the material optical properties can be selected unambiguously from the set of candidate models.","PeriodicalId":46010,"journal":{"name":"Advanced Optical Technologies","volume":"11 1","pages":"173 - 178"},"PeriodicalIF":1.8,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45415804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Conference and trade show reports 会议和贸易展览报告
IF 1.8
Advanced Optical Technologies Pub Date : 2022-07-14 DOI: 10.1515/aot-2022-0026
{"title":"Conference and trade show reports","authors":"","doi":"10.1515/aot-2022-0026","DOIUrl":"https://doi.org/10.1515/aot-2022-0026","url":null,"abstract":"","PeriodicalId":46010,"journal":{"name":"Advanced Optical Technologies","volume":"1 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2022-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44196125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ellipsometry and polarimetry – classical measurement techniques with always new developments, concepts, and applications 椭圆偏振测量法和偏振测量法——具有新发展、新概念和新应用的经典测量技术
IF 1.8
Advanced Optical Technologies Pub Date : 2022-07-11 DOI: 10.1515/aot-2022-0025
R. Schmidt‐Grund, C. Sturm, A. Hertwig
{"title":"Ellipsometry and polarimetry – classical measurement techniques with always new developments, concepts, and applications","authors":"R. Schmidt‐Grund, C. Sturm, A. Hertwig","doi":"10.1515/aot-2022-0025","DOIUrl":"https://doi.org/10.1515/aot-2022-0025","url":null,"abstract":"","PeriodicalId":46010,"journal":{"name":"Advanced Optical Technologies","volume":"11 1","pages":"57 - 58"},"PeriodicalIF":1.8,"publicationDate":"2022-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47467067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Certain topics in ellipsometric data modeling with splines: a review of recent developments 用样条曲线进行椭偏数据建模的若干主题:对最近发展的回顾
IF 1.8
Advanced Optical Technologies Pub Date : 2022-07-04 DOI: 10.1515/aot-2022-0006
D. Likhachev
{"title":"Certain topics in ellipsometric data modeling with splines: a review of recent developments","authors":"D. Likhachev","doi":"10.1515/aot-2022-0006","DOIUrl":"https://doi.org/10.1515/aot-2022-0006","url":null,"abstract":"Abstract Dielectric function representation by a variety of polynomial spline functions provides a consistent and efficient method for accurate modeling of the material optical properties in the context of spectroscopic ellipsometry data interpretation. Splines as an elegant and purely mathematical way for such modeling task were introduced about three decades ago. In the following years the use of splines in the area of ellipsometric data analysis became widely utilized. The goal of this review is to provide a self-contained presentation on the current status of the dielectric function modeling by splines for advanced industrial ellipsometry users but, hopefully, it can be useful for some scholarly users as well. It is also intended to promote more extended recognition of the spline-based modeling among optical metrology professionals. Here, a brief description of different ways, – ordinary polynomials, piecewise polynomials (splines), and B(asis)-spline functions, – is presented to parameterize an arbitrary function which can be used as an analytic representation of the dielectric-function curves. A number of particular polynomial-based models for the optical functions of materials and how they may be used in applications are also discussed. Particular attention is paid to different concepts of the efficient and optimal spline construction.","PeriodicalId":46010,"journal":{"name":"Advanced Optical Technologies","volume":"11 1","pages":"93 - 115"},"PeriodicalIF":1.8,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67327968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
A generalised thermal LED-model and its applications 一种通用的热LED模型及其应用
IF 1.8
Advanced Optical Technologies Pub Date : 2022-06-30 DOI: 10.1515/aot-2022-0017
Ruben Stahlbaum, L. Röhe, Martin Kleimeyer, B. Günther
{"title":"A generalised thermal LED-model and its applications","authors":"Ruben Stahlbaum, L. Röhe, Martin Kleimeyer, B. Günther","doi":"10.1515/aot-2022-0017","DOIUrl":"https://doi.org/10.1515/aot-2022-0017","url":null,"abstract":"Abstract Within the last 10 years the illuminants for automotive exterior lighting shifted nearly completely to LEDs. Due to being semiconductor devices, LEDs behave differently compared to incandescent lamps and xenon bulbs. The paper derives a generalized thermal and geometric LED model. This gains advantage because the data provided in data sheets is different from manufacturer to manufacturer and even from one manufacturer the data is not standardized. So the data is not prepared to be included easily in any development process. In this context “model” mainly refers to a calculation procedure. The data provided in data sheets often has to be digitized. Outgoing from this digitized data a model, based on a smart data combination and polynomial regression, is built up. This model is described in detail and an application to simulations by means of computational fluid dynamics (CFD) is discussed. In doing so a geometric simplification is suggested. This simplification is done in a manner to keep the thermal characteristic of the original LED. The model may be used in different applications such as simulations and design. It allows predicting the thermal status and light output during a virtual development phase, because it inherently calculates the thermal power and light output. This may lead to a more precise estimation of temperatures in lighting systems as well as a prediction of hot lumens.","PeriodicalId":46010,"journal":{"name":"Advanced Optical Technologies","volume":"11 1","pages":"191 - 204"},"PeriodicalIF":1.8,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46651817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multilevel effective material approximation for modeling ellipsometric measurements on complex porous thin films 用于模拟复杂多孔薄膜椭圆测量的多级有效材料近似
IF 1.8
Advanced Optical Technologies Pub Date : 2022-06-22 DOI: 10.1515/aot-2022-0007
R. Sachse, V. Hodoroaba, R. Kraehnert, A. Hertwig
{"title":"Multilevel effective material approximation for modeling ellipsometric measurements on complex porous thin films","authors":"R. Sachse, V. Hodoroaba, R. Kraehnert, A. Hertwig","doi":"10.1515/aot-2022-0007","DOIUrl":"https://doi.org/10.1515/aot-2022-0007","url":null,"abstract":"Abstract Catalysts are important components in chemical processes because they lower the activation energy and thus determine the rate, efficiency and selectivity of a chemical reaction. This property plays an important role in many of today’s processes, including the electrochemical splitting of water. Due to the continuous development of catalyst materials, they are becoming more complex, which makes a reliable evaluation of physicochemical properties challenging even for modern analytical measurement techniques and industrial manufacturing. We present a fast, vacuum-free and non-destructive analytical approach using multi-sample spectroscopic ellipsometry to determine relevant material parameters such as film thickness, porosity and composition of mesoporous IrOx–TiOy films. Mesoporous IrOx–TiOy films were deposited on Si wafers by sol–gel synthesis, varying the composition of the mixed oxide films between 0 and 100 wt%Ir. The ellipsometric modeling is based on an anisotropic Bruggeman effective medium approximation (a-BEMA) to determine the film thickness and volume fraction of the material and pores. The volume fraction of the material was again modeled using a Bruggeman EMA to determine the chemical composition of the materials. The ellipsometric fitting results were compared with complementary methods, such as scanning electron microscopy (SEM), electron probe microanalysis (EPMA) as well as environmental ellipsometric porosimetry (EEP).","PeriodicalId":46010,"journal":{"name":"Advanced Optical Technologies","volume":"11 1","pages":"137 - 147"},"PeriodicalIF":1.8,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48278283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polarimetric techniques for the structural studies and diagnosis of brain 脑结构研究与诊断的极化技术
IF 1.8
Advanced Optical Technologies Pub Date : 2022-06-20 DOI: 10.1515/aot-2022-0015
Omar Rodríguez-Núñez, T. Novikova
{"title":"Polarimetric techniques for the structural studies and diagnosis of brain","authors":"Omar Rodríguez-Núñez, T. Novikova","doi":"10.1515/aot-2022-0015","DOIUrl":"https://doi.org/10.1515/aot-2022-0015","url":null,"abstract":"Abstract The polarimetric techniques are used in various biomedical applications for a non-contact and fast diagnosis of tissue that is known as optical biopsy approach. These optical modalities provide relevant information on micro-architecture of biological tissue and its alterations induced by different diseases, thus, helping in staging and precise delineation of the pathology zones. In this review, we summarize the work of different research groups on using polarized light for brain tissue studies. This includes the investigations of polarimetric properties of brain tissue (both scattering and optical anisotropy) for brain connectome reconstruction, the visualization of in-plane brain fiber tracts for brain tumor contrast enhancement during neurosurgery, and the histopathology analysis for disease staging in Alzheimer’s subjects. We discuss also further perspectives for the pre-clinical studies of brain with polarized light.","PeriodicalId":46010,"journal":{"name":"Advanced Optical Technologies","volume":"11 1","pages":"157 - 171"},"PeriodicalIF":1.8,"publicationDate":"2022-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48663365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信