{"title":"Novel procedure for the identification of a starting point for the CMP","authors":"C. Trum, Sebastian Sitzberger, R. Rascher","doi":"10.1515/aot-2022-0022","DOIUrl":null,"url":null,"abstract":"Abstract In the field of precision optics, more and more glass materials that are difficult to machine are being used because of their interesting optical properties. At the same time, the geometries are getting more demanding and the tolerances to be achieved are tighter. The establishment of an efficient process chain is therefore becoming an ever-greater challenge. Particularly in the field of CMP, knowledge of the machining properties of pads and slurries are required to design efficient processes. This knowledge has to be gained through time-consuming in-house tests, as the manufacturers of the consumables are usually only able to provide basic data. In addition, the boundary conditions under which the data were collected are often incomplete defined and thus not comparable. The novel methodical procedure presented here for the initial design of CMP processes is based on a standardized procedure for carrying out the tests. From the resulting database, a starting point for the design of own processes can be identified quickly and unerringly. This article describes the structure of the procedure as well as the necessary background. In addition, the visualization and the procedure for selecting start parameters are discussed using an example application.","PeriodicalId":46010,"journal":{"name":"Advanced Optical Technologies","volume":"11 1","pages":"205 - 213"},"PeriodicalIF":2.3000,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/aot-2022-0022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In the field of precision optics, more and more glass materials that are difficult to machine are being used because of their interesting optical properties. At the same time, the geometries are getting more demanding and the tolerances to be achieved are tighter. The establishment of an efficient process chain is therefore becoming an ever-greater challenge. Particularly in the field of CMP, knowledge of the machining properties of pads and slurries are required to design efficient processes. This knowledge has to be gained through time-consuming in-house tests, as the manufacturers of the consumables are usually only able to provide basic data. In addition, the boundary conditions under which the data were collected are often incomplete defined and thus not comparable. The novel methodical procedure presented here for the initial design of CMP processes is based on a standardized procedure for carrying out the tests. From the resulting database, a starting point for the design of own processes can be identified quickly and unerringly. This article describes the structure of the procedure as well as the necessary background. In addition, the visualization and the procedure for selecting start parameters are discussed using an example application.
期刊介绍:
Advanced Optical Technologies is a strictly peer-reviewed scientific journal. The major aim of Advanced Optical Technologies is to publish recent progress in the fields of optical design, optical engineering, and optical manufacturing. Advanced Optical Technologies has a main focus on applied research and addresses scientists as well as experts in industrial research and development. Advanced Optical Technologies partners with the European Optical Society (EOS). All its 4.500+ members have free online access to the journal through their EOS member account. Topics: Optical design, Lithography, Opto-mechanical engineering, Illumination and lighting technology, Precision fabrication, Image sensor devices, Optical materials (polymer based, inorganic, crystalline/amorphous), Optical instruments in life science (biology, medicine, laboratories), Optical metrology, Optics in aerospace/defense, Simulation, interdisciplinary, Optics for astronomy, Standards, Consumer optics, Optical coatings.