Advanced Optical Technologies最新文献

筛选
英文 中文
Technology and research on the influence of liquid crystal cladding doped with magnetic Fe3O4 nanoparticles on light propagation in an optical taper sensor 掺杂磁性 Fe3O4 纳米粒子的液晶包层对光学锥形传感器中光传播影响的技术与研究
IF 2.3
Advanced Optical Technologies Pub Date : 2024-07-05 DOI: 10.3389/aot.2024.1422695
Michał Niewczas, K. Stasiewicz, N. Przybysz, Anna Pakuła, Jan Paczesny, Rafał Zbonikowski, Jerzy Dziaduszek, Przemysław Kula, L. Jaroszewicz
{"title":"Technology and research on the influence of liquid crystal cladding doped with magnetic Fe3O4 nanoparticles on light propagation in an optical taper sensor","authors":"Michał Niewczas, K. Stasiewicz, N. Przybysz, Anna Pakuła, Jan Paczesny, Rafał Zbonikowski, Jerzy Dziaduszek, Przemysław Kula, L. Jaroszewicz","doi":"10.3389/aot.2024.1422695","DOIUrl":"https://doi.org/10.3389/aot.2024.1422695","url":null,"abstract":"The results obtained for new dual-cladding optical fiber tapers surrounded by liquid crystal (LC) doped with Fe3O4 nanoparticles in a specially developed glass cell are presented. The created structures are sensitive to changes in refractive index values in the surrounding medium caused by modifying external environment parameters. In this investigation, cells are filled with nematic LCs 6CHBT and with the same mixture doped with 0.1 wt% and 0.5 wt% of magnetic nanoparticles (Fe3O4 NPs). The taper is made on a standard single-mode telecommunication fiber, stretched out to a length of 20.0 ± 0.5 mm, and the diameter of the tapers is approximately 15.0 ± 0.3 μm, with a loss lower than 0.5 dB @ 1,550 nm. Measurements are carried out in a wide range covering the visible and infrared ranges in two setups: 1) without a magnetic field, with steering only by voltage and 2) with an applied magnetic field. The presented spectrum results are divided into two ranges according to the parameters of optical spectrum analyzers: 350–1,200 nm and 1,200–2,400 nm. For all investigations, a steering voltage is chosen from the range of 0 to 200 V, which allows for establishing the influence of dopants on transmitted power and time response at different arrangements. Due to the sensitivity of LCs to temperature changes, this paper focuses on measuring at room temperature the effect of the magnetic field on propagation in a fiber optic taper. The proposed solution demonstrates the technology for creating advanced components as a combination of fiber optic technology, LCs, and nanoparticles. The presented results show the possibility of creating new sensors of various external factors such as magnetic or electric fields in miniaturized dimensions.","PeriodicalId":46010,"journal":{"name":"Advanced Optical Technologies","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141676511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optical non-linearities and applications of ZnS phosphors ZnS 荧光粉的光学非线性和应用
IF 1.8
Advanced Optical Technologies Pub Date : 2024-05-09 DOI: 10.3389/aot.2024.1390474
Ayushi Chauhan, Rajesh Sharma, Manjot Singh, Reena Sharma
{"title":"Optical non-linearities and applications of ZnS phosphors","authors":"Ayushi Chauhan, Rajesh Sharma, Manjot Singh, Reena Sharma","doi":"10.3389/aot.2024.1390474","DOIUrl":"https://doi.org/10.3389/aot.2024.1390474","url":null,"abstract":"Optical non-linearities play a crucial role in enabling efficient and ultrafast switching applications that are essential for next-generation photonic devices. ZnS phosphor material produces the best results in terms of increased luminescence quantum yield when doped with certain impurities. Nevertheless, the investigation of the third-order non-linear optical susceptibility of the phosphor materials can be exploited for various switching applications. In this regard, we review the recent advancements in the investigation of non-linear optical properties of ZnS phosphors, where the knowledge of absorption and refraction is utilized in various optical and detector applications. Furthermore, the review highlights strategies employed to enhance the non-linear optical response of phosphor materials as well as a general discussion of an attosecond optical switching scheme which can be used to fabricate devices with petahertz speeds. Consequently, we provide a solution to the unsolved problem of the significant extension of optical limiting applications to switching applications by developing design strategies to manipulate conventional ZnS phosphor material. The potential challenges and future prospects of utilizing phosphor materials for switching applications are also addressed. The strategies for manipulating ZnS phosphor can be generalized for a broad range of other materials by minimizing linear and non-linear losses, while enhancing the values of the non-linear refractive index coefficient. We propose that the figure-of-merit of ZnS material can be enhanced by using a suitable combination of pump and probe wavelength values, which can be useful for optical switching applications.","PeriodicalId":46010,"journal":{"name":"Advanced Optical Technologies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140997343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intelligent visually lossless compression of dental images 牙科图像的智能视觉无损压缩
IF 1.8
Advanced Optical Technologies Pub Date : 2024-02-23 DOI: 10.3389/aot.2024.1306142
L. Kryvenko, O. Krylova, Vladimir Lukin, Sergii S. Kryvenko
{"title":"Intelligent visually lossless compression of dental images","authors":"L. Kryvenko, O. Krylova, Vladimir Lukin, Sergii S. Kryvenko","doi":"10.3389/aot.2024.1306142","DOIUrl":"https://doi.org/10.3389/aot.2024.1306142","url":null,"abstract":"Background: Tendencies to increase the mean size of dental images and the number of images acquired daily makes necessary their compression for efficient storage and transferring via communication lines in telemedicine and other applications. To be a proper solution, lossy compression techniques have to provide a visually lossless option (mode) where a desired quality (invisibility of introduced distortions for preserving diagnostically valuable information) is ensured quickly and reliably simultaneously with a rather large compression ratio.Objective: Within such an approach, our goal is to give answers to several practical questions such as what encoder to use, how to set its parameter that controls compression, how to verify that we have reached our ultimate goal, what are additional advantages and drawbacks of a given coder, and so on.Methods: We analyze the performance characteristics of several encoders mainly based on discrete cosine transform for a set of 512 × 512 pixel fragments of larger size dental images produced by Morita and Dentsply Sirona imaging systems. To control the visual quality of compressed images and the invisibility of introduced distortions, we have used modern visual quality metrics and distortion invisibility thresholds established for them in previous experiments. Besides, we have also studied the so-called just noticeable distortions (JND) concept, namely, the approach based on the first JND point when the difference between an image subject to compression and its compressed version starts to appear.Results: The rate-distortion dependences and coder setting parameters obtained for the considered approaches are compared. The values of the parameters that control compression (PCC) have been determined. The ranges of the provided values of compression ratio have been estimated and compared. It is shown that the provided CR values vary from about 20 to almost 70 for modern coders and almost noise-free images that is significantly better than for JPEG. For images with visible noise, the minimal and maximal values of produced CR are smaller than for the almost noise-free images. We also present the results of the verification of compressed image quality by specialists (professional dentists).Conclusion: It is shown that it is possible and easy to carry out visually lossless compression of dental images using the proposed approaches with providing quite high compression ratios without loss of data diagnostic value.","PeriodicalId":46010,"journal":{"name":"Advanced Optical Technologies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139957214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erratum: Terahertz focusing blazed diffractive optical elements for frequency demultiplexing 勘误:用于频率解复用的太赫兹聚焦炽热衍射光学元件
IF 1.8
Advanced Optical Technologies Pub Date : 2024-01-05 DOI: 10.3389/aot.2023.1360163
{"title":"Erratum: Terahertz focusing blazed diffractive optical elements for frequency demultiplexing","authors":"","doi":"10.3389/aot.2023.1360163","DOIUrl":"https://doi.org/10.3389/aot.2023.1360163","url":null,"abstract":"","PeriodicalId":46010,"journal":{"name":"Advanced Optical Technologies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139383129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of laser-induced contamination on dielectric thin films in MHz sub-ps regime 研究介电薄膜在 MHz sub-ps 机制下的激光诱导污染问题
IF 1.8
Advanced Optical Technologies Pub Date : 2024-01-04 DOI: 10.3389/aot.2023.1261267
M. Stehlik, J. Zideluns, Camille Petite, Valentin Allard, Marco Minissale, A. Moreau, A. Lereu, F. Lemarchand, Frank Wagner, Julien Lumeau, Laurent Gallais
{"title":"Investigation of laser-induced contamination on dielectric thin films in MHz sub-ps regime","authors":"M. Stehlik, J. Zideluns, Camille Petite, Valentin Allard, Marco Minissale, A. Moreau, A. Lereu, F. Lemarchand, Frank Wagner, Julien Lumeau, Laurent Gallais","doi":"10.3389/aot.2023.1261267","DOIUrl":"https://doi.org/10.3389/aot.2023.1261267","url":null,"abstract":"High-repetition rate diode-pumped sub-ps lasers are widely used in the industrial sector for high-quality material processing applications. However, for their reliable operation, it is crucial to study the power handling capabilities of the optical components used in these systems. The optical components, such as mirrors, gratings, dichroic filters, and gain media, are designed based on dielectric thin films. When subjected to high-intensity laser radiation, the phenomenon of laser-induced contamination (LIC) can lead to the growth of a nanometric, highly absorbent layer on an irradiated optical surface, which can result in transmission or reflection loss and eventual permanent damage. In this study, we investigate LIC growth on dielectric oxide thin films in an air environment irradiated by MHz sub-ps laser at 515 nm. We examine the effect of thin film deposition method, material, and thickness on LIC growth dynamics. The irradiated spots on the surface are inspected using multiple observation methods, including white light interference microscopy and fluorescence imaging. Our results show that the LIC growth dynamics depend on the laser intensity and irradiation time and can be affected by the thin film deposition method, material, and thickness. These findings could be used to inform the development of more resistant optical components, ensuring long-term reliable laser operation required for industrial applications. The study highlights the need for validating optical components using tests that closely mimic real-world applications and provides insight into the complex processes that lead to LIC.","PeriodicalId":46010,"journal":{"name":"Advanced Optical Technologies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139386872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Terahertz focusing blazed diffractive optical elements for frequency demultiplexing 用于频率解复用的太赫兹聚焦炽热衍射光学元件
IF 1.8
Advanced Optical Technologies Pub Date : 2023-12-01 DOI: 10.3389/aot.2023.1310578
M. Kaluza, P. Komorowski, P. Zagrajek, A. Siemion
{"title":"Terahertz focusing blazed diffractive optical elements for frequency demultiplexing","authors":"M. Kaluza, P. Komorowski, P. Zagrajek, A. Siemion","doi":"10.3389/aot.2023.1310578","DOIUrl":"https://doi.org/10.3389/aot.2023.1310578","url":null,"abstract":"This study presents the novel optical passive components for spatial frequency division demultiplexing of terahertz (THz) radiation. Four different diffractive optical elements (DOEs) were designed as the combination of phase kinoform lenses and phase blazed diffraction gratings. The designed structures were verified in numerical simulations and they showed the promising results. Subsequently, they were manufactured using fused deposition modeling (FDM) 3D printing technology from highly transparent cyclic olefin copolymer (COC). The manufactured structures were examined in the experimental setup. The results matched numerical simulations. Thus, eight frequencies in the range from 150 GHz to 220 GHz every 10 GHz were spatially separated. The novel design solution guaranteed 63% higher relative efficiency compared to the reference DOE. The presented study can be suitable as the application for 6G technology telecommunication systems as the spatial frequency division demultiplexing component for the THz radiation band.","PeriodicalId":46010,"journal":{"name":"Advanced Optical Technologies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138613394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrafast laser processing of glass waveguide substrates for multi-fiber connectivity in co-packaged optics 用于共封装光学器件中多光纤连接的玻璃波导衬底的超快激光处理
IF 1.8
Advanced Optical Technologies Pub Date : 2023-08-30 DOI: 10.3389/aot.2023.1244009
Jason R. Grenier, L. Brusberg, K. Wieland, Juergen Matthies, Chad C. Terwilliger
{"title":"Ultrafast laser processing of glass waveguide substrates for multi-fiber connectivity in co-packaged optics","authors":"Jason R. Grenier, L. Brusberg, K. Wieland, Juergen Matthies, Chad C. Terwilliger","doi":"10.3389/aot.2023.1244009","DOIUrl":"https://doi.org/10.3389/aot.2023.1244009","url":null,"abstract":"High bandwidth demanding applications such as high-performance computing and hyperscale datacenters are drivers for co-packaged optics, which aims to bring optical signals as close as possible to the electrical computing chips by integrating the electro-optic transceivers and ASICs on the same package substrate. These next-generation switches require advanced fiber-to-chip connectivity and novel packaging concepts to enable sufficient power and cost savings. As such, low-loss, high bandwidth, and high fiber-counts are required at the photonic chip interface. In this work, these challenges are addressed by enabling the multi-fiber push-on (MPO) interface at the edge of integrated glass waveguide substrates and thus leverages the existing fiber connector eco-system. An ultrafast laser process is used to singulate glass wafers into individual photonic chips leaving optical-quality end-facets with <1 μm flatness over the 6.5 mm wide connector region thereby directly enabling low-loss fiber-to-chip edge-coupling. To overcome the high-costs and complex photonic packaging associated with active alignment of the fiber connectors to the glass waveguide interfaces, ultrafast laser-ablated features are accurately positioned on the glass substrate to enable self-alignment of the MPO connector guide-pins resulting in a passive alignment approach. Subsequent mating and de-mating of the MPO connector to the glass waveguide interface yields on average a 0.19 dB increase in the coupling loss compared to using active alignment.","PeriodicalId":46010,"journal":{"name":"Advanced Optical Technologies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43118179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Light along curves: photonic shaping tools 光沿曲线:光子整形工具
IF 1.8
Advanced Optical Technologies Pub Date : 2023-07-26 DOI: 10.3389/aot.2023.1237132
D. Flamm, J. Hellstern, M. Kaiser, M. Kahmann, J. Kleiner, C. Tillkorn
{"title":"Light along curves: photonic shaping tools","authors":"D. Flamm, J. Hellstern, M. Kaiser, M. Kahmann, J. Kleiner, C. Tillkorn","doi":"10.3389/aot.2023.1237132","DOIUrl":"https://doi.org/10.3389/aot.2023.1237132","url":null,"abstract":"A structured light concept is reported enabling to distribute a large number of focus copies at arbitrary positions in a working volume. Applying this holographic 3D-beam splitter concept to ultrashort laser pulses allows to deposit energy along accelerating trajectories in the volume of transparent materials. Based on the entirety of the volume modifications created in this way, the material can be separated, for example, to create chamfered glass edges. These photonic tools impress with enormous versatility, which enable equally diverse application strategies ranging from cutting and welding to data storing.","PeriodicalId":46010,"journal":{"name":"Advanced Optical Technologies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43152703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Polarization-dependent orientation of LiNbO3:Eu3+ nanocrystals using ultrashort laser pulses in borosilicate glasses 硼硅酸盐玻璃中超短激光脉冲作用下LiNbO3:Eu3+纳米晶体的偏振相关取向
IF 1.8
Advanced Optical Technologies Pub Date : 2023-07-25 DOI: 10.3389/aot.2023.1237570
J. Ari, M. Cavillon, M. Lancry, B. Poumellec
{"title":"Polarization-dependent orientation of LiNbO3:Eu3+ nanocrystals using ultrashort laser pulses in borosilicate glasses","authors":"J. Ari, M. Cavillon, M. Lancry, B. Poumellec","doi":"10.3389/aot.2023.1237570","DOIUrl":"https://doi.org/10.3389/aot.2023.1237570","url":null,"abstract":"Femtosecond (fs) laser writing is a flexible way to induce three-dimensional local structural modifications inside glass materials, such as crystallization. The latter is a function of both glass composition, hence properties, and laser parameters. Previous works have shown that a glass composition of 33Li2O–33Nb2O5–13SiO2–21B2O3 (LNSB) mol% yields to crystallization of laser polarization orientable LiNbO3 nanocrystals upon irradiation with a 1,030 nm fs laser. In this paper, we present the effects of rare earth incorporation in the glass composition [i.e., europium (0.5, 1, and 2 mol%)] on the crystallization process of LiNbO3 nanocrystals induced by fs laser irradiation. The embedding of Eu3+ ions into these nanostructures has an interest in developing new integrated and miniaturized optical lasers and amplifiers in visible wavelengths. The influence of laser parameters, such as repetition rate (RR), pulse energy, and polarization, has been studied. Irradiated areas are investigated using optical and electron microscopy techniques. The effect of Eu3+ concentration on the crystallization behavior (crystal formation and morphology) is discussed, as Eu2O3 is not acting as a nucleation agent in LNSB glass up to 2 mol%.","PeriodicalId":46010,"journal":{"name":"Advanced Optical Technologies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49588970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photoinduced self-assembly of nanocrystals inside Al2O3-Lu2O3 glass 纳米晶体在Al2O3-Lu2O3玻璃中的光诱导自组装
IF 1.8
Advanced Optical Technologies Pub Date : 2023-07-25 DOI: 10.3389/aot.2023.1237663
T. Okuno, Y. Shimotsuma, M. Shimizu, K. Miura
{"title":"Photoinduced self-assembly of nanocrystals inside Al2O3-Lu2O3 glass","authors":"T. Okuno, Y. Shimotsuma, M. Shimizu, K. Miura","doi":"10.3389/aot.2023.1237663","DOIUrl":"https://doi.org/10.3389/aot.2023.1237663","url":null,"abstract":"The femtosecond laser direct writing technique can allow spatially selective crystallization with suppression of thermal conduction effects. In the case of Al2O3-R2O3 (R = Y, Dy) glass, the polarization-dependent periodic nanostructure with crystallization is self-assembled, however, the formation mechanism of self-assembled nanocrystals in glass remains to be clarified. We focused on Al2O3-Lu2O3 glass prepared by a containerless laser melting method and demonstrated the formation of a nanograting with crystallization by femtosecond laser irradiation. Polarized luminescence measurements of the crystallized region by the pulse bursts with a controllable number of pulses reveal that luminescence anisotropy increased at more than 50 pulses in a burst, suggesting the formation of the nanograting. We have also followed the time variation of birefringence by polarized light imaging to evaluate the time scale for the formation of nanogratings with crystallization.","PeriodicalId":46010,"journal":{"name":"Advanced Optical Technologies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46817144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信