J. X. Cai, B. M. Shi, N. Li, Y. Liu, Z. G. Zhang, Y. N. Zan, Q. Z. Wang, B. L. Xiao, Z. Y. Ma
{"title":"Effect of Al2O3 on the Mechanical Properties of (B4C + Al2O3)/Al Neutron Absorbing Materials","authors":"J. X. Cai, B. M. Shi, N. Li, Y. Liu, Z. G. Zhang, Y. N. Zan, Q. Z. Wang, B. L. Xiao, Z. Y. Ma","doi":"10.1007/s40195-024-01711-2","DOIUrl":"10.1007/s40195-024-01711-2","url":null,"abstract":"<div><p>B<sub>4</sub>C/Al composites are widely utilized as neutron absorbing materials for the storage and transportation of spent nuclear fuel. In order to improve the high-temperature mechanical properties of B<sub>4</sub>C/Al composites, in-situ nano-Al<sub>2</sub>O<sub>3</sub> was introduced utilizing oxide on Al powder surface. In this study, the Al<sub>2</sub>O<sub>3</sub> content was adjusted by utilizing spheroid Al powder with varying diameters, thereby investigating the impact of Al<sub>2</sub>O<sub>3</sub> content on the tensile properties of (B<sub>4</sub>C + Al<sub>2</sub>O<sub>3</sub>)/Al composites. It was found that the pinning effect of Al<sub>2</sub>O<sub>3</sub> on the grain boundaries could hinder the recovery of dislocations and lead to dislocation accumulation at high temperature. As the result, with the increase in Al<sub>2</sub>O<sub>3</sub> content and the decrease in grain size, the high-temperature strength of the composites increased significantly. The finest Al powder used in this investigation had a diameter of 1.4 μm, whereas the resultant composite exhibited a maximum strength of 251 MPa at room temperature and 133 MPa at 350 °C, surpassing that of traditional B<sub>4</sub>C/Al composites.</p></div>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141687852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhibin Liu, Guangya Zhu, Wenkai Li, Di Mei, Peihua Du, Yufeng Sun, Shijie Zhu, Shaokang Guan
{"title":"Effect of Rolling Temperature on the Mechanical Properties and Corrosion Behavior of Mg–Zn–Y–Nd Alloy Thin Sheets","authors":"Zhibin Liu, Guangya Zhu, Wenkai Li, Di Mei, Peihua Du, Yufeng Sun, Shijie Zhu, Shaokang Guan","doi":"10.1007/s40195-024-01740-x","DOIUrl":"10.1007/s40195-024-01740-x","url":null,"abstract":"<div><p>There is a growing demand for degradable membranes with sufficient mechanical properties to guide tissue regeneration in dental surgery. In the present work, a two-stage rolling process in which the first rolling stage (FRS) adopted a reduction rate of 30% for six passes at various temperatures, while the second rolling stage was rolling at 200 °C for two passes, was employed to prepare a 150 μm-grade Mg–2.0Zn–0.5Y–0.5Nd (ZE21B) Mg alloy sheets for guided tissue regeneration membrane. The microstructure of the thin sheets was gradually refined with increasing rolling passes, and the thin sheets that were rolled at different FRS temperatures exhibit an ellipse texture. The thin sheets rolled at 350 °C for FRS show low elongation due to premature fracture caused by the coarse second phase particles. On account of uniform and fine grains, the thin sheets rolled at 400 °C for the FRS have proper mechanical properties: yield strength of 214.6 ± 8.5 MPa, ultimate tensile strength (UTS) of 246.8 ± 10.3 MPa and elongation to failure of 28.3 ± 1.2%. When rolling at 450 °C for FRS, proper ductility of the thin sheets has been acquired, followed by a decline in UTS since a bimodal structure with fine and coarse grain was developed. Immersion tests demonstrated the FRS temperature had no significant effect on the corrosion behavior and corrosion rate of Mg alloy sheets after 7 days’ immersion in artificial saliva solution. This research has great significance for the production of degradable Mg sheets for guided tissue regeneration membrane.</p></div>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141688131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Phase Selection and Microstructure Evolution Dependance on Composition for Zr–Fe Eutectic Alloys","authors":"Dong-Dong Zuo, Jian Chang, Hai-Peng Wang","doi":"10.1007/s40195-024-01736-7","DOIUrl":"10.1007/s40195-024-01736-7","url":null,"abstract":"<div><p>The knowledge of the phase selection and microstructure evolution of Zr–Fe eutectic alloys is still poorly understood. The presumed eutectic alloy with a nominal composition of Zr<sub>76.0</sub>Fe<sub>24.0</sub> was discovered to contain a significant proportion of <i>α</i>-Zr dendrites. Hereby, phase selection and microstructure evolution dependance on composition for Zr–Fe eutectic alloys was experimentally determined by using differential scanning calorimetry (DSC) and meticulous electron microscopes. Eight alloys, spanning the composition range of 73.5–74.7% Zr, were examined to investigate microstructure evolution and non-isothermal crystallization kinetics. Results indicate that in alloys ranging from Zr<sub>73.5</sub>Fe<sub>26.5</sub> to Zr<sub>73.9</sub>Fe<sub>26.1</sub>, the primary FeZr<sub>2</sub> phase demonstrates preferential growth, followed by eutectic microstructure formation during liquid alloy solidification. The volume fraction of FeZr<sub>2</sub> dendrites decreases as the Zr content increases. Conversely, in alloys ranging from Zr<sub>74.0</sub>Fe<sub>26.0</sub> to Zr<sub>74.7</sub>Fe<sub>25.3</sub>, primary <i>β</i>-Zr dendrites preferentially grow, followed by a eutectic reaction in the remaining liquid phase. The content of <i>α</i>-Zr dendrites reduces with decreasing Zr content. As mentioned above, a critical composition range for phase selection is defined as Zr<sub><i>x</i></sub>Fe<sub>100.0−<i>x</i></sub> (73.9 < <i>x</i> < 74.0).</p></div>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141685079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Experimental and DFT Investigations of AlNbTiVZr High Entropy Alloys with Excellent Mechanical Properties","authors":"Hongwei Yan, Yong’an Zhang, Wei Xiao, Boyu Xue, Rui Liu, Xiwu Li, Zhihui Li, Baiqing Xiong","doi":"10.1007/s40195-024-01716-x","DOIUrl":"10.1007/s40195-024-01716-x","url":null,"abstract":"<div><p>This study investigated the microstructure and mechanical properties of AlNbTiVZr series high-entropy alloys (HEAs) through both experimental studies and density functional theory calculations. Significant improvements in the microstructures and mechanical properties were achieved for the AlNbTiVZr series HEAs by meticulously adjusting the alloy composition and employing homogenization heat treatment. Notably, the specimen designated as Al<sub>0.5</sub>NbTiVZr<sub>0.5</sub> demonstrated excellent mechanical properties including a compressive yield strength of 1162 MPa and a compressive strength of 1783 MPa. After homogenization heat treatment at 1000 °C for 24 h, the Al<sub>0.5</sub>NbTiVZr<sub>0.5</sub> alloy exhibits brittle-to-ductile transition. Further atomic-scale theoretical simulations reveal that the decrease of Al content intrinsically enhances the ductility of the alloys, thereby indicating that the mechanical properties of the AlNbTiVZr series HEAs were significantly influenced by the chemical composition. Additionally, specific atomic pair formations were observed to adversely affect the microstructure of the AlNbTiVZr series HEAs, particularly in terms of ductility. These findings provide valuable insights for the design and optimization of light weight HEAs, emphasizing the synergistic adjustment of alloy composition and heat treatment processes to achieve a balance between the strength and ductility.</p></div>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141502102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Atomistic Insights into the Irradiation Resistance of Co-Free High Entropy Alloy FeMnNiCr","authors":"Chunhui Wang, Lei Guo, Rui Li, Qing Peng","doi":"10.1007/s40195-024-01738-5","DOIUrl":"10.1007/s40195-024-01738-5","url":null,"abstract":"<div><p>We have investigated the displacement cascade irradiation resistance behavior of a cobalt-free high entropy alloy FeMnNiCr using molecular dynamics simulations. The results show that defects in FeMnNiCr form in small clusters, and their migration is significantly inhibited, leading to a higher defect recombination rate and a lower number of residual defects compared to Ni. Additionally, FeMnNiCr exhibits a longer thermal peak life and lower thermal conductivity compared to Ni, providing a longer time for defect migration and combining. The migration of defect clusters in FeMnNiCr displays three-dimensional properties, attributed to its high chemical disorder. After prolonged irradiation, defects in FeMnNiCr stabilize as small clusters, whereas point defects in Ni tend to form large defect clusters and evolve into dislocations. Considering the feature of absence of the element cobalt, our results imply that FeMnNiCr has great potential in application in nuclear energies.</p></div>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141502103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaoguang Li, Jiatao Liu, Qing Liu, Chunbo Zhang, Hang Liang, Lei Cui, Yongchang Liu
{"title":"High-Temperature Fatigue Behavior of Inertia Friction Welded Joints of GH4065A Ni-Based Superalloy","authors":"Xiaoguang Li, Jiatao Liu, Qing Liu, Chunbo Zhang, Hang Liang, Lei Cui, Yongchang Liu","doi":"10.1007/s40195-024-01739-4","DOIUrl":"10.1007/s40195-024-01739-4","url":null,"abstract":"<div><p>In this work, the novel Ni-based superalloy GH4065A inertia friction welding (IFW) joints were subjected to the post-welding heat treatments (PWHT) at 730 ℃ for 5 h or 760 ℃ for 5 h, and the differences in microstructure characteristics, local mechanical properties, and fatigue failure life were focused. Furthermore, based on the high-temperature low-cycle fatigue testing and characterization results, the correlation between the microstructure characteristics and low-cycle fatigue damage behavior was systematically analyzed. It was found that there were smaller grains in the thermo-mechanically affected zone (TMAZ) than in the weld zone and heat-affected zone (HAZ), and the boundary region between TMAZ and HAZ was the fatigue failure position of IFW joints under the high-temperature low-cycle fatigue loading. The fatigue testing results showed that the high-temperature fatigue performance for GH4065A IFW joints degenerated with the increase in PWHT temperature. There existed cyclic softening and inhomogeneous fatigue damage in an IFW joint, which was more significant under the 760 ℃ 5 h PWHT condition. Microstructurally, dislocation tangles and cells formed in the boundary region between TMAZ and HAZ under the fatigue loading. The difference in grain size after the IFW process and the inhomogeneous <i>γ</i>′ phrase re-precipitation after the PWHT in the boundary region between TMAZ and HAZ resulted in the local inhomogeneous strengthening, corresponding to uneven plastic deformation and fatigue failure behavior under the fatigue loadings.</p></div>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141525844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kejie Tan, Jinli Xie, Hailong Qin, Bin Xu, Guichen Hou, Jinguo Li, Zhongnan Bi, Ji Zhang
{"title":"Effects of Co and Nb on the Crack of Additive Manufacturing Nickel-Based Superalloys","authors":"Kejie Tan, Jinli Xie, Hailong Qin, Bin Xu, Guichen Hou, Jinguo Li, Zhongnan Bi, Ji Zhang","doi":"10.1007/s40195-024-01726-9","DOIUrl":"10.1007/s40195-024-01726-9","url":null,"abstract":"<div><p>Increasing the print quality is the critical requirement for the additive manufactured complex part of aero-engines of nickel-based superalloys. A study of the effects of Co and Nb on the crack is performed focusing on the selective laser melting (SLM) nickel-based superalloy. In this paper, the solvus temperature of <i>γ</i>', crack characteristics, microstructure, thermal expansion, and mechanical properties of SLM nickel-based superalloy are investigated by varying the content of Co and Nb. The alloy with 15Co/0Nb shows the highest comprehensive quality. Nb increases the crack risk and thermal deformation, and then Co accelerates the stress release. Therefore, Co is an extremely important alloying element for improving the quality of SLM nickel-based superalloy. Finally, the crack growth kinetics and the strain difference are discussed to reveal the SLM crack regular that is affected by time or temperature. The analysis work on the effect of alloying elements can obtain an effective foundational theory to guide the composition optimization of SLM nickel-based superalloys.</p></div>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141525842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuqi Liu, Feng Wang, Songyang Chen, Hui Wang, Zhiping Xiong, Khurram Yaqoob, Zhangwei Wang, Min Song
{"title":"Thermal Stability and Strengthening Effect of Coherent Precipitates in a (FeCoNi)92Al2.5Ti5.5 High Entropy Alloy","authors":"Yuqi Liu, Feng Wang, Songyang Chen, Hui Wang, Zhiping Xiong, Khurram Yaqoob, Zhangwei Wang, Min Song","doi":"10.1007/s40195-024-01727-8","DOIUrl":"10.1007/s40195-024-01727-8","url":null,"abstract":"<div><p>The coarsening behavior and strengthening effect of L1<sub>2</sub>-Ni<sub>3</sub>(Ti,Al) precipitates in a face-centered-cubic (FCC) (FeCoNi)<sub>92</sub>Al<sub>2.5</sub>Ti<sub>5.5</sub> high entropy alloy have been systematically investigated. The coherent L1<sub>2</sub> precipitates, uniformly distributed throughout the FCC matrix, consistently retain a spherical shape. The coarsening rate coefficient of precipitate is determined by employing the Philippe-Voorhees (PV) model, suggesting excellent thermal stability. Furthermore, the elemental partitioning and compositional evolution of the L1<sub>2</sub> precipitates is analyzed by atom probe tomography, which identify aluminum (Al) as the slowest diffusion species during the coarsening process. In addition, the precipitation strengthening effect is quantified to ascertain the optimal size of the precipitates. Our study enhances the understanding of precipitate coarsening in high entropy alloys, presenting valuable insights into their thermal stability and mechanical properties.</p></div>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141526050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xue Han, Dan Zhang, Song Zhang, Mohammed R. I. Abueida, Lili Tan, Xiaopeng Lu, Qiang Wang, Huanye Liu
{"title":"Fatigue and Corrosion Fatigue Properties of Mg–Zn–Zr–Nd Alloys in Glucose-Containing Simulated Body Fluids","authors":"Xue Han, Dan Zhang, Song Zhang, Mohammed R. I. Abueida, Lili Tan, Xiaopeng Lu, Qiang Wang, Huanye Liu","doi":"10.1007/s40195-024-01730-z","DOIUrl":"10.1007/s40195-024-01730-z","url":null,"abstract":"<div><p>Medical bone implant magnesium (Mg) alloys are subjected to both corrosive environments and complex loads in the human body. The increasing number of hyperglycemic and diabetic patients in recent years has brought new challenges to the fatigue performance of Mg alloys. Therefore, it is significant to study the corrosion fatigue (CF) behavior of medical Mg alloys in glucose-containing simulated body fluids for their clinical applications. Herein, the corrosion and fatigue properties of extruded Mg-Zn-Zr-Nd alloy in Hank’s balanced salt solution (HBSS) containing different concentrations (1 g/L and 3 g/L) of glucose were investigated. The average grain size of the alloy is about 5 μm, which provides excellent overall mechanical properties. The conditional fatigue strength of the alloy was 127 MPa in air and 88 MPa and 70 MPa in HBSS containing 1 g/L glucose and 3 g/L glucose, respectively. Fatigue crack initiation points for alloys in air are oxide inclusions and in solution are corrosion pits. The corrosion rate of the alloy is high at the beginning, and decreases as the surface corrosion product layer thickens with the increase of immersion time. The corrosion products of the alloy are mainly Mg(OH)<sub>2</sub>, MgO and a small amount of Ca-P compounds. The electrochemical results indicated that the corrosion rate of the alloys gradually decreased with increasing immersion time, but the corrosion tendency of the alloy was greater in HBSS containing 3 g/L glucose. On the one hand, glucose accelerates the corrosion process by adsorbing large amounts of aggressive Cl<sup>−</sup> ions. On the other hand, glucose will be oxidized to form gluconic acid, and then reacts with Mg(OH)<sub>2</sub> and MgO to form Mg gluconate, which destroys the corrosion product film and leads to the aggravation of corrosion and the accumulation of fatigue damage.</p></div>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141502104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Linwei Li, Donghu Zhou, Kai Zhao, Lifeng Jiang, Huijun Kang, Enyu Guo, Feng Mao, Zongning Chen, Tongmin Wang
{"title":"Effects of Reinforcement Content and Homogenization Treatment on the Microstructure and Mechanical Properties of in-situ TiB2/2219Al Composites","authors":"Linwei Li, Donghu Zhou, Kai Zhao, Lifeng Jiang, Huijun Kang, Enyu Guo, Feng Mao, Zongning Chen, Tongmin Wang","doi":"10.1007/s40195-024-01695-z","DOIUrl":"10.1007/s40195-024-01695-z","url":null,"abstract":"<div><p>Obtaining an appropriate grain size is crucial for Al alloys or Al matrix composites prior to processing, as it significantly influences the mechanical properties of components and workability during the manufacturing process. TiB<sub>2</sub> particles are exceptional grain refiners in Al and serve as excellent reinforcement particles for particulate-reinforced aluminum matrix composites. However, the optimal particle content for achieving excellent refinement and strengthening effects depends on the matrix composition and requires further investigation. Additionally, homogenization is essential for mitigating the element segregation in the ingot. Although it is anticipated that adding suitable particles can effectively inhibit undesired grain growth during homogenization, comprehensive investigations on this aspect are currently lacking. Therefore, TiB<sub>2</sub>/2219Al matrix composites with varying reinforcement contents (0, 1, 3, 5 wt%) were fabricated through traditional casting followed by homogenization treatment to address these research gaps. The effects of reinforcement content and homogenization treatment on the microstructure and mechanical properties of <i>in-situ</i> TiB<sub>2</sub>/2219Al composites were investigated. The results demonstrate a gradual strengthening of the refining effect with increasing particle concentration. Moreover, composites containing 3 wt% TiB<sub>2</sub> particles exhibit superior comprehensive mechanical properties in both as-cast and homogenized state. Additionally, potential orientation relationships are observed and calculated between undissolved Al<sub>2</sub>Cu eutectic phase and submicron or nanometer-sized TiB<sub>2</sub> particles, resulting in a mixture structure with enhanced bonding strength. This mixture structure is continuously distributed along grain boundaries during solidification, forming a three-dimensional cellular network that acts as primary retarding forces for grain growth during homogenization. Furthermore, the established homogenization kinetic equations were further utilized to analyze the correlation between homogenization time and grain size, as well as the influence of homogenization temperature.</p></div>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141502105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}