Acta Metallurgica Sinica-English Letters最新文献

筛选
英文 中文
Thermal Stability and Strengthening Effect of Coherent Precipitates in a (FeCoNi)92Al2.5Ti5.5 High Entropy Alloy (FeCoNi)92Al2.5Ti5.5高熵合金中相干沉淀的热稳定性和强化效应
IF 2.9 2区 材料科学
Acta Metallurgica Sinica-English Letters Pub Date : 2024-06-25 DOI: 10.1007/s40195-024-01727-8
Yuqi Liu, Feng Wang, Songyang Chen, Hui Wang, Zhiping Xiong, Khurram Yaqoob, Zhangwei Wang, Min Song
{"title":"Thermal Stability and Strengthening Effect of Coherent Precipitates in a (FeCoNi)92Al2.5Ti5.5 High Entropy Alloy","authors":"Yuqi Liu,&nbsp;Feng Wang,&nbsp;Songyang Chen,&nbsp;Hui Wang,&nbsp;Zhiping Xiong,&nbsp;Khurram Yaqoob,&nbsp;Zhangwei Wang,&nbsp;Min Song","doi":"10.1007/s40195-024-01727-8","DOIUrl":"10.1007/s40195-024-01727-8","url":null,"abstract":"<div><p>The coarsening behavior and strengthening effect of L1<sub>2</sub>-Ni<sub>3</sub>(Ti,Al) precipitates in a face-centered-cubic (FCC) (FeCoNi)<sub>92</sub>Al<sub>2.5</sub>Ti<sub>5.5</sub> high entropy alloy have been systematically investigated. The coherent L1<sub>2</sub> precipitates, uniformly distributed throughout the FCC matrix, consistently retain a spherical shape. The coarsening rate coefficient of precipitate is determined by employing the Philippe-Voorhees (PV) model, suggesting excellent thermal stability. Furthermore, the elemental partitioning and compositional evolution of the L1<sub>2</sub> precipitates is analyzed by atom probe tomography, which identify aluminum (Al) as the slowest diffusion species during the coarsening process. In addition, the precipitation strengthening effect is quantified to ascertain the optimal size of the precipitates. Our study enhances the understanding of precipitate coarsening in high entropy alloys, presenting valuable insights into their thermal stability and mechanical properties.</p></div>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":"37 9","pages":"1491 - 1500"},"PeriodicalIF":2.9,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141526050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fatigue and Corrosion Fatigue Properties of Mg–Zn–Zr–Nd Alloys in Glucose-Containing Simulated Body Fluids 含葡萄糖模拟体液中 Mg-Zn-Zr-Nd 合金的疲劳和腐蚀疲劳特性
IF 2.9 2区 材料科学
Acta Metallurgica Sinica-English Letters Pub Date : 2024-06-25 DOI: 10.1007/s40195-024-01730-z
Xue Han, Dan Zhang, Song Zhang, Mohammed R. I. Abueida, Lili Tan, Xiaopeng Lu, Qiang Wang, Huanye Liu
{"title":"Fatigue and Corrosion Fatigue Properties of Mg–Zn–Zr–Nd Alloys in Glucose-Containing Simulated Body Fluids","authors":"Xue Han,&nbsp;Dan Zhang,&nbsp;Song Zhang,&nbsp;Mohammed R. I. Abueida,&nbsp;Lili Tan,&nbsp;Xiaopeng Lu,&nbsp;Qiang Wang,&nbsp;Huanye Liu","doi":"10.1007/s40195-024-01730-z","DOIUrl":"10.1007/s40195-024-01730-z","url":null,"abstract":"<div><p>Medical bone implant magnesium (Mg) alloys are subjected to both corrosive environments and complex loads in the human body. The increasing number of hyperglycemic and diabetic patients in recent years has brought new challenges to the fatigue performance of Mg alloys. Therefore, it is significant to study the corrosion fatigue (CF) behavior of medical Mg alloys in glucose-containing simulated body fluids for their clinical applications. Herein, the corrosion and fatigue properties of extruded Mg-Zn-Zr-Nd alloy in Hank’s balanced salt solution (HBSS) containing different concentrations (1 g/L and 3 g/L) of glucose were investigated. The average grain size of the alloy is about 5 μm, which provides excellent overall mechanical properties. The conditional fatigue strength of the alloy was 127 MPa in air and 88 MPa and 70 MPa in HBSS containing 1 g/L glucose and 3 g/L glucose, respectively. Fatigue crack initiation points for alloys in air are oxide inclusions and in solution are corrosion pits. The corrosion rate of the alloy is high at the beginning, and decreases as the surface corrosion product layer thickens with the increase of immersion time. The corrosion products of the alloy are mainly Mg(OH)<sub>2</sub>, MgO and a small amount of Ca-P compounds. The electrochemical results indicated that the corrosion rate of the alloys gradually decreased with increasing immersion time, but the corrosion tendency of the alloy was greater in HBSS containing 3 g/L glucose. On the one hand, glucose accelerates the corrosion process by adsorbing large amounts of aggressive Cl<sup>−</sup> ions. On the other hand, glucose will be oxidized to form gluconic acid, and then reacts with Mg(OH)<sub>2</sub> and MgO to form Mg gluconate, which destroys the corrosion product film and leads to the aggravation of corrosion and the accumulation of fatigue damage.</p></div>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":"37 9","pages":"1533 - 1550"},"PeriodicalIF":2.9,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141502104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of Reinforcement Content and Homogenization Treatment on the Microstructure and Mechanical Properties of in-situ TiB2/2219Al Composites 加固含量和均质化处理对原位 TiB2/2219Al 复合材料微观结构和力学性能的影响
IF 2.9 2区 材料科学
Acta Metallurgica Sinica-English Letters Pub Date : 2024-06-25 DOI: 10.1007/s40195-024-01695-z
Linwei Li, Donghu Zhou, Kai Zhao, Lifeng Jiang, Huijun Kang, Enyu Guo, Feng Mao, Zongning Chen, Tongmin Wang
{"title":"Effects of Reinforcement Content and Homogenization Treatment on the Microstructure and Mechanical Properties of in-situ TiB2/2219Al Composites","authors":"Linwei Li,&nbsp;Donghu Zhou,&nbsp;Kai Zhao,&nbsp;Lifeng Jiang,&nbsp;Huijun Kang,&nbsp;Enyu Guo,&nbsp;Feng Mao,&nbsp;Zongning Chen,&nbsp;Tongmin Wang","doi":"10.1007/s40195-024-01695-z","DOIUrl":"10.1007/s40195-024-01695-z","url":null,"abstract":"<div><p>Obtaining an appropriate grain size is crucial for Al alloys or Al matrix composites prior to processing, as it significantly influences the mechanical properties of components and workability during the manufacturing process. TiB<sub>2</sub> particles are exceptional grain refiners in Al and serve as excellent reinforcement particles for particulate-reinforced aluminum matrix composites. However, the optimal particle content for achieving excellent refinement and strengthening effects depends on the matrix composition and requires further investigation. Additionally, homogenization is essential for mitigating the element segregation in the ingot. Although it is anticipated that adding suitable particles can effectively inhibit undesired grain growth during homogenization, comprehensive investigations on this aspect are currently lacking. Therefore, TiB<sub>2</sub>/2219Al matrix composites with varying reinforcement contents (0, 1, 3, 5 wt%) were fabricated through traditional casting followed by homogenization treatment to address these research gaps. The effects of reinforcement content and homogenization treatment on the microstructure and mechanical properties of <i>in-situ</i> TiB<sub>2</sub>/2219Al composites were investigated. The results demonstrate a gradual strengthening of the refining effect with increasing particle concentration. Moreover, composites containing 3 wt% TiB<sub>2</sub> particles exhibit superior comprehensive mechanical properties in both as-cast and homogenized state. Additionally, potential orientation relationships are observed and calculated between undissolved Al<sub>2</sub>Cu eutectic phase and submicron or nanometer-sized TiB<sub>2</sub> particles, resulting in a mixture structure with enhanced bonding strength. This mixture structure is continuously distributed along grain boundaries during solidification, forming a three-dimensional cellular network that acts as primary retarding forces for grain growth during homogenization. Furthermore, the established homogenization kinetic equations were further utilized to analyze the correlation between homogenization time and grain size, as well as the influence of homogenization temperature.</p></div>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":"37 8","pages":"1421 - 1437"},"PeriodicalIF":2.9,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141502105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Novel Multiphase Stainless Steel with Ultra-Low Yield Ratio and High Ductility 一种具有超低屈服比和高延展性的新型多相不锈钢
IF 2.9 2区 材料科学
Acta Metallurgica Sinica-English Letters Pub Date : 2024-06-25 DOI: 10.1007/s40195-024-01733-w
Menghao Liu, Cuiwei Du, Yuewu Li, Xiaogang Li
{"title":"A Novel Multiphase Stainless Steel with Ultra-Low Yield Ratio and High Ductility","authors":"Menghao Liu,&nbsp;Cuiwei Du,&nbsp;Yuewu Li,&nbsp;Xiaogang Li","doi":"10.1007/s40195-024-01733-w","DOIUrl":"10.1007/s40195-024-01733-w","url":null,"abstract":"<div><p>This study focuses on developing a novel multiphase stainless steel with enhanced ductility and an ultralow yield ratio achieved through solid-solution treatment. The steel exhibits remarkable mechanical properties: a tensile strength of approximately 1114 MPa, an ultralow yield ratio of 0.36, exceptional uniform elongation of approximately 17.48%, and total elongation of approximately 21.73%. The remarkable ductility of the steel can be attributed to the transformation-induced plasticity (TRIP) effect observed in the retained austenite, while its exceptional strength results from the combined effects of TRIP and the martensite phase.</p></div>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":"37 10","pages":"1777 - 1784"},"PeriodicalIF":2.9,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141525843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation of TiO2 Nano-Flower Coating on Ti Substrates with Good Physical Sterilization Effect and Biocompatibility 在钛基底上制备具有良好物理灭菌效果和生物相容性的 TiO2 纳米花涂层
IF 2.9 2区 材料科学
Acta Metallurgica Sinica-English Letters Pub Date : 2024-06-20 DOI: 10.1007/s40195-024-01724-x
Ruoyu Di, Yonghua Sun, Runhua Yao, Sen Pei, Xiaohong Yao, Ruiqiang Hang
{"title":"Preparation of TiO2 Nano-Flower Coating on Ti Substrates with Good Physical Sterilization Effect and Biocompatibility","authors":"Ruoyu Di,&nbsp;Yonghua Sun,&nbsp;Runhua Yao,&nbsp;Sen Pei,&nbsp;Xiaohong Yao,&nbsp;Ruiqiang Hang","doi":"10.1007/s40195-024-01724-x","DOIUrl":"10.1007/s40195-024-01724-x","url":null,"abstract":"<div><p>We report a facile solution method to form titanium oxide (TiO<sub>2</sub>) nano-flower structure on the titanium (Ti) substrates for realizing good physical sterilization and biocompatibility. We first prepare TiO<sub>2</sub> nanotubes (NT) with a diameter of about 80–100 nm and a length of about 5 μm on Ti substrates by anodization, which is utilized as precursor. Then, we employ immersion treatment in different concentrations of phosphoric acid solution at 75 °C for 5 h to realize the transformation from TiO<sub>2</sub> NT to TiO<sub>2</sub> nano-flower structure. In addition, we studied the effects of phosphoric acid concentration (1 wt%, 2.5 wt%, 5 wt% and 10 wt%) on the TiO<sub>2</sub> nano-flower structure, and the antibacterial properties and biocompatibility of the TiO<sub>2</sub> nano-flower structure. The results show that TiO<sub>2</sub> nano-flower structure become larger and thicker with the increase in the phosphoric acid concentration, and the thickness of the coating can reach 6.88 μm. Meanwhile, the TiO<sub>2</sub> nano-flower structure shows good physical sterilization effect, especially for the TiO<sub>2</sub> nano-flower structure formed in 10 wt% H<sub>3</sub>PO<sub>4</sub> solution, the antibacterial rate can reach 95%. In addition, the TiO<sub>2</sub> nano-flower structure have no toxicity to the osteoblasts and support cell growth.</p></div>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":"37 9","pages":"1581 - 1589"},"PeriodicalIF":2.9,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142412623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microstructure, Mechanical Properties and Corrosion Resistance of the Mo0.5V0.5NbTiZrx High-Entropy Alloys with Low Thermal Neutron Sections 具有低热中子截面的 Mo0.5V0.5NbTiZrx 高熵合金的显微结构、力学性能和耐腐蚀性能
IF 2.9 2区 材料科学
Acta Metallurgica Sinica-English Letters Pub Date : 2024-06-20 DOI: 10.1007/s40195-024-01728-7
Chao Xiang, En-Hou Han, Zhiming Zhang, Huameng Fu, Haifeng Zhang, Jianqiu Wang, Guodong Hu
{"title":"Microstructure, Mechanical Properties and Corrosion Resistance of the Mo0.5V0.5NbTiZrx High-Entropy Alloys with Low Thermal Neutron Sections","authors":"Chao Xiang,&nbsp;En-Hou Han,&nbsp;Zhiming Zhang,&nbsp;Huameng Fu,&nbsp;Haifeng Zhang,&nbsp;Jianqiu Wang,&nbsp;Guodong Hu","doi":"10.1007/s40195-024-01728-7","DOIUrl":"10.1007/s40195-024-01728-7","url":null,"abstract":"<div><p>High-entropy alloys exhibit significant potential for application in the nuclear industry owing to their exceptional resistance to irradiation, excellent mechanical properties, and corrosion resistance. In this work, the Mo<sub>0.5</sub>V<sub>0.5</sub>NbTiZr<sub><i>x</i></sub> (<i>x</i> = 0–2.0) high-entropy alloys containing alloying elements with low thermal neutron absorption cross section were designed and prepared. The crystal structure, microstructure, mechanical properties and corrosion resistance of the studied alloys were investigated. All the alloys possess a body-centered cubic crystal structure, which is consistent with the CALPHAD (acronym of CALculation of PHAse Diagram) modeling results. The addition of Zr does not alter the crystal structure of the Mo<sub>0.5</sub>V<sub>0.5</sub>NbTiZr<sub><i>x</i></sub> alloys; however, it leads to an increase in the lattice constant as Zr content increases. The addition of Zr initially enhances the yield strength, but subsequently leads to a decline as the Zr content increases further. Specifically, the corrosion resistance of the Mo<sub>0.5</sub>V<sub>0.5</sub>NbTiZr<sub><i>x</i></sub> alloys in superheated steam at 400 °C and 10.3 MPa decreases with the increase of Zr content. The effect of Zr content on the phase formation, mechanical properties and corrosion resistance of the Mo<sub>0.5</sub>V<sub>0.5</sub>NbTiZr<sub><i>x</i></sub> high-entropy alloys are discussed. This study has successfully developed a novel Mo<sub>0.5</sub>V<sub>0.5</sub>NbTiZr<sub>0.25</sub> high-entropy alloy, which demonstrates exceptional properties including high yield strength, excellent ductility, and superior anti-corrosion performance. The findings of this research have significant implications for the design of high-entropy alloys in nuclear applications.</p></div>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":"37 10","pages":"1643 - 1656"},"PeriodicalIF":2.9,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142412617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intermetallic Compounds Formation in Dissimilar Friction Stir Welding of Mg/Cu Alloys 镁/铜合金异种摩擦搅拌焊接中金属间化合物的形成
IF 2.9 2区 材料科学
Acta Metallurgica Sinica-English Letters Pub Date : 2024-06-13 DOI: 10.1007/s40195-024-01714-z
Xue Li, Qingzhen Zhao, Hao Su, Ji Chen, Chuansong Wu
{"title":"Intermetallic Compounds Formation in Dissimilar Friction Stir Welding of Mg/Cu Alloys","authors":"Xue Li,&nbsp;Qingzhen Zhao,&nbsp;Hao Su,&nbsp;Ji Chen,&nbsp;Chuansong Wu","doi":"10.1007/s40195-024-01714-z","DOIUrl":"10.1007/s40195-024-01714-z","url":null,"abstract":"<div><p>Joining dissimilar Mg/Cu alloys was still an intractable problem because of the excessive intermetallic compounds (IMCs) and poor mechanical properties using conventional welding methods. In the present study, friction stir welding was employed for the butt joining of dissimilar AZ31B Mg-alloy and T2 pure Cu plates. Defect-free Mg/Cu joints were obtained with Mg-RS and Cu-AS configuration, at a welding speed of 50 mm/min and tool rotating speeds of 325 r/min, 625 r/min and 925 r/min. At the joining interface, both Mg<sub>2</sub>Cu and MgCu<sub>2</sub> IMC phases were observed, with a clear, uniform and continuous IMCs layer composed of two sub-layers, layer-A of Mg + Mg<sub>2</sub>Cu and layer-B of Mg<sub>2</sub>Cu + MgCu<sub>2</sub>. The maximum ultimate tensile strength of the Mg/Cu friction stir welding joint reached 130 MPa at 925 r/min due to enhanced mechanical interlocking between Mg and Cu, as well as sufficient metallurgical bonding at the joining interface with an IMCs layer thickness in the range of 1.0–2.0 μm.</p></div>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":"37 9","pages":"1523 - 1532"},"PeriodicalIF":2.9,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141346004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Ca Micro-Alloying on the Microstructure and Anti-Corrosion Property of Mg0.5Zn0.2Ge Alloy 钙微合金化对 Mg0.5Zn0.2Ge 合金微观结构和抗腐蚀性能的影响
IF 2.9 2区 材料科学
Acta Metallurgica Sinica-English Letters Pub Date : 2024-05-31 DOI: 10.1007/s40195-024-01703-2
Bishan Cheng, Depeng Li, Baikang Xing, Ruiqing Hou, Pingli Jiang, Shijie Zhu, Shaokang Guan
{"title":"Effect of Ca Micro-Alloying on the Microstructure and Anti-Corrosion Property of Mg0.5Zn0.2Ge Alloy","authors":"Bishan Cheng,&nbsp;Depeng Li,&nbsp;Baikang Xing,&nbsp;Ruiqing Hou,&nbsp;Pingli Jiang,&nbsp;Shijie Zhu,&nbsp;Shaokang Guan","doi":"10.1007/s40195-024-01703-2","DOIUrl":"10.1007/s40195-024-01703-2","url":null,"abstract":"<div><p>Magnesium and its alloys have attracting rising attention as one of biodegradable metallic materials. However, the rapid corrosion and severe localized corrosion still hinder their extensive applications in clinics. In this study, micro-alloying of Ca (≤ 0.1 wt%) into Mg0.5Zn0.2Ge alloy developed in our previous work was explored to further enhance the corrosion resistance and alleviate the localized corrosion of the alloy. The results reveal that the addition of Ca leads to the transformation of the cathodic Mg<sub>2</sub>Ge phase in Mg0.5Zn0.2Ca alloy into anodic MgCaGe phase in Ca-containing alloys, thereby changing the galvanic couples in alloys during immersion. The preferential dissolution of MgCaGe phase promotes the participation of Ca and Ge into the formation of corrosion products, resulting in the enrichment of Ca and Ge in the outmost of corrosion product layer, which stabilizes and passivates the corrosion product layer on Mg alloy surface. Additionally, the enrichment of Zn at the corrosion interface seems to further hinder the corrosion of Mg matrix. All of these factors confer a slower and more uniform corrosion on Mg0.5Zn0.2Ge<i>x</i>Ca (<i>x</i> &lt; 0.1 wt%) alloy, which provides favorable candidates for the further processing to gain suitable biodegradable Mg alloys.</p></div>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":"37 7","pages":"1147 - 1160"},"PeriodicalIF":2.9,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142415351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Y, Al Co-Doping on Hydrogen Storage Properties of La–Mg–Ni-Based Alloys Y、Al 共掺对 La-Mg-Ni-Based 合金储氢性能的影响
IF 2.9 2区 材料科学
Acta Metallurgica Sinica-English Letters Pub Date : 2024-05-31 DOI: 10.1007/s40195-024-01709-w
Guanjiu Wu, Yichao Xie, Yuan Li, Qing Wang, Chenfeng Fan, Wenfeng Wang, Lu Zhang, Shumin Han
{"title":"Effect of Y, Al Co-Doping on Hydrogen Storage Properties of La–Mg–Ni-Based Alloys","authors":"Guanjiu Wu,&nbsp;Yichao Xie,&nbsp;Yuan Li,&nbsp;Qing Wang,&nbsp;Chenfeng Fan,&nbsp;Wenfeng Wang,&nbsp;Lu Zhang,&nbsp;Shumin Han","doi":"10.1007/s40195-024-01709-w","DOIUrl":"10.1007/s40195-024-01709-w","url":null,"abstract":"<div><p>La–Mg–Ni-based hydrogen storage alloys have excellent hydrogen storage properties. This work reports the hydrogen storage performance of a series of A<sub>2</sub>B<sub>7</sub>-type La<sub>0.96</sub>Mg<sub>0.04</sub>Ni<sub>3.34</sub>Al<sub>0.13</sub> alloy and La<sub>0.96-<i>x</i></sub>Y<sub><i>x</i></sub>Mg<sub>0.04</sub>Ni<sub>3.47–0.6<i>x</i></sub>Al<sub>0.6<i>x</i></sub> (<i>x</i> = 0, 0.22, 0.33, 0.44) alloys, and explores the effect of Y and Al element combined substitution on the microstructure and hydrogen storage performance of A<sub>2</sub>B<sub>7</sub>-type La–Mg–Ni-based alloys. The alloys are composed of Ce<sub>2</sub>Ni<sub>7</sub> phase and LaNi<sub>5</sub> phase. With the increase of <i>x</i>, the cell volume of Ce<sub>2</sub>Ni<sub>7</sub> phase decreases, while that of LaNi<sub>5</sub> phase increases, indicating that Y atom mainly enters Ce<sub>2</sub>Ni<sub>7</sub> phase and Al atom mainly enters LaNi<sub>5</sub> phase. An appropriate amount of co-substitution increases the hydrogen storage capacity and reduces the hydrogen absorption/desorption plateau pressure hysteresis of the alloy. When <i>x</i> = 0.44, the hydrogen storage capacity of the alloy is 1.449 wt%, and the hysteresis coefficient is 0.302. The cell volume of Ce<sub>2</sub>Ni<sub>7</sub> phase and LaNi<sub>5</sub> phase expands to different degrees after 20 absorption/desorption cycles. With the increase of <i>x</i>, the volume expansion rate decreases, and the cycle capacity retention rate also gradually decreases. This is related to the amorphization of Ce<sub>2</sub>Ni<sub>7</sub> phase. When <i>x</i> = 0.22, the capacity retention rate of the alloy is 91.4%.</p></div>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":"37 8","pages":"1399 - 1410"},"PeriodicalIF":2.9,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142415230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanical Properties and Microstructure of the Shear Band Formed at Cryogenic Temperature in the NiCrFe Medium-Entropy Alloy 镍铬铁中熵合金在低温下形成的剪切带的力学性能和微观结构
IF 2.9 2区 材料科学
Acta Metallurgica Sinica-English Letters Pub Date : 2024-05-31 DOI: 10.1007/s40195-024-01720-1
Ruoyu Liu, Wenshu Li, Xiayang Yu, Lanyi Liu, Bingfeng Wang
{"title":"Mechanical Properties and Microstructure of the Shear Band Formed at Cryogenic Temperature in the NiCrFe Medium-Entropy Alloy","authors":"Ruoyu Liu,&nbsp;Wenshu Li,&nbsp;Xiayang Yu,&nbsp;Lanyi Liu,&nbsp;Bingfeng Wang","doi":"10.1007/s40195-024-01720-1","DOIUrl":"10.1007/s40195-024-01720-1","url":null,"abstract":"<div><p>There are nanotwins in the shear band formed in a moment (about 10<sup>−5</sup> s) in some NiCrFe-based medium-entropy alloys (MEAs), and these shear bands can be recognized as a special kind of materials due to their high strength and good plasticity. In this study, the single shear band of the NiCrFe MEA was prepared at 77 K. A series of characterizations were carried out to analyze the microstructures in the shear band. The strength of the shear band was investigated by the split Hopkinson pressure bar and in-situ compression. The micropillar in the shear band containing nanotwins exhibits excellent strength-plasticity synergy. The compressive yield strength of the shear band measured by in-situ compression is 175% higher than that of the matrix, reaching 1405 MPa, with the fracture strain exceeding 0.5. The strengthening mechanism of the shear band was revealed by the combination of the experimental results and molecular dynamics simulation. The synergistic effect of multiple strengthening mechanisms enhances the strength of the NiCrFe MEA containing nanotwins, in which the grain boundary strengthening of the ultrafine equiaxed grains and the dynamic Hall–Petch effect of the nanotwins dominate. In addition, the good plasticity of the shear band is ascribed to the stress concentration reduction of the twin boundaries of nanotwins and the activation of multiple slip systems due to the randomly oriented nanotwins. These findings provide theoretical guidance for the design of nanotwinned MEAs to realize excellent strength-plasticity synergy for structural materials.</p></div>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":"37 8","pages":"1377 - 1386"},"PeriodicalIF":2.9,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142415229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信