{"title":"一种具有超低屈服比和高延展性的新型多相不锈钢","authors":"Menghao Liu, Cuiwei Du, Yuewu Li, Xiaogang Li","doi":"10.1007/s40195-024-01733-w","DOIUrl":null,"url":null,"abstract":"<div><p>This study focuses on developing a novel multiphase stainless steel with enhanced ductility and an ultralow yield ratio achieved through solid-solution treatment. The steel exhibits remarkable mechanical properties: a tensile strength of approximately 1114 MPa, an ultralow yield ratio of 0.36, exceptional uniform elongation of approximately 17.48%, and total elongation of approximately 21.73%. The remarkable ductility of the steel can be attributed to the transformation-induced plasticity (TRIP) effect observed in the retained austenite, while its exceptional strength results from the combined effects of TRIP and the martensite phase.</p></div>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":"37 10","pages":"1777 - 1784"},"PeriodicalIF":2.9000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Multiphase Stainless Steel with Ultra-Low Yield Ratio and High Ductility\",\"authors\":\"Menghao Liu, Cuiwei Du, Yuewu Li, Xiaogang Li\",\"doi\":\"10.1007/s40195-024-01733-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study focuses on developing a novel multiphase stainless steel with enhanced ductility and an ultralow yield ratio achieved through solid-solution treatment. The steel exhibits remarkable mechanical properties: a tensile strength of approximately 1114 MPa, an ultralow yield ratio of 0.36, exceptional uniform elongation of approximately 17.48%, and total elongation of approximately 21.73%. The remarkable ductility of the steel can be attributed to the transformation-induced plasticity (TRIP) effect observed in the retained austenite, while its exceptional strength results from the combined effects of TRIP and the martensite phase.</p></div>\",\"PeriodicalId\":457,\"journal\":{\"name\":\"Acta Metallurgica Sinica-English Letters\",\"volume\":\"37 10\",\"pages\":\"1777 - 1784\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Metallurgica Sinica-English Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40195-024-01733-w\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Metallurgica Sinica-English Letters","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s40195-024-01733-w","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
A Novel Multiphase Stainless Steel with Ultra-Low Yield Ratio and High Ductility
This study focuses on developing a novel multiphase stainless steel with enhanced ductility and an ultralow yield ratio achieved through solid-solution treatment. The steel exhibits remarkable mechanical properties: a tensile strength of approximately 1114 MPa, an ultralow yield ratio of 0.36, exceptional uniform elongation of approximately 17.48%, and total elongation of approximately 21.73%. The remarkable ductility of the steel can be attributed to the transformation-induced plasticity (TRIP) effect observed in the retained austenite, while its exceptional strength results from the combined effects of TRIP and the martensite phase.
期刊介绍:
This international journal presents compact reports of significant, original and timely research reflecting progress in metallurgy, materials science and engineering, including materials physics, physical metallurgy, and process metallurgy.