Semiconductor Physics Quantum Electronics & Optoelectronics最新文献

筛选
英文 中文
Interferometrie Four-Wave-Mixing Spectroscopy on Semiconductors 半导体上的干涉四波混频光谱
IF 0.9
Semiconductor Physics Quantum Electronics & Optoelectronics Pub Date : 1997-01-01 DOI: 10.1364/qo.1997.qwb.2
M. Wehner, J. Hetzler, M. Wegener
{"title":"Interferometrie Four-Wave-Mixing Spectroscopy on Semiconductors","authors":"M. Wehner, J. Hetzler, M. Wegener","doi":"10.1364/qo.1997.qwb.2","DOIUrl":"https://doi.org/10.1364/qo.1997.qwb.2","url":null,"abstract":"In ultrafast nonlinear spectroscopy interferometric techniques can be applied both for heterodyne detection of the signal and for the excitation of the sample by phase-locked pulses, thus delivering coherent control [1] over the system. Such techniques have been predicted to be extremely sensitive with respect to the dynamics of elementary excitation [2] and have been applied to the study of non-Markovian dynamics of molecules [3, 4]. For the case of semiconductors, interferometric sensitivity has been employed for detection purposes [5] and the use of phase-locked pulses has been reported quite recently [6]. In this paper we report the observation of a novel interference phenomenon in interferometric four-wave-mixing due to contributions beyond the third order perturbational limit. An analysis of the observed interferences allows for an estimation of the importance of these higher order contributions.","PeriodicalId":44695,"journal":{"name":"Semiconductor Physics Quantum Electronics & Optoelectronics","volume":"41 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"1997-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84984209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New interpretation of quantum wire luminescence using a non standard description of the valence band states 利用价带态的非标准描述对量子线发光的新解释
IF 0.9
Semiconductor Physics Quantum Electronics & Optoelectronics Pub Date : 1997-01-01 DOI: 10.1364/qo.1997.qthe.4
F. Filipowitz, U. Marti, M. Glick, F. Reinhart, J. Wang, P. von Allmen, J. Leburton
{"title":"New interpretation of quantum wire luminescence using a non standard description of the valence band states","authors":"F. Filipowitz, U. Marti, M. Glick, F. Reinhart, J. Wang, P. von Allmen, J. Leburton","doi":"10.1364/qo.1997.qthe.4","DOIUrl":"https://doi.org/10.1364/qo.1997.qthe.4","url":null,"abstract":"Theoretical predictions1 have shown that confined structures, quantum wires (QWR) or quantum dots (QD), should have higher gain and absorption, compared to quantum wells, owing to the discontinuity in the joint density of states. We use a non standard description of the valence band states2 to evaluate the absorption of V-shaped quantum wires close to the band edge. We choose the projection axis of the angular momentum of the valence band states along the non-confined direction of the wire. This description has two advantages: (i) the masses are isotropic along the two confined directions and (ii) the light hole (lh) and heavy hole (hh) states are decoupled at kz=0, if the kinetic energy of the confined holes is the same along both confined directions and the energy separation between the {lh,hh}i and {lh,hh}i+1 subbands is high. This description is particularly advantageous close to the band edge where transitions are mostly excitonic. Photoluminescence (PL) and photoluminescence excitation (PLE) measurements made on V-shaped quantum wires are reinterpreted: the lowest energy transition is a e1-lh1 excitonic transition and the second lowest is a e1-hh1 excitonic transition. This new interpretation is the first to explain the lower intensity of the lowest energy peak observed in PL and PLE measurements. To assess the impact of the non-uniformity of the wires, we evaluate the absorption of V-shaped QWR (V-QWR) grown by MBE deposition over a non-planar substrate3.","PeriodicalId":44695,"journal":{"name":"Semiconductor Physics Quantum Electronics & Optoelectronics","volume":"1 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"1997-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85298785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Femtosecond luminescence of semiconductor nanostructures 半导体纳米结构的飞秒发光
IF 0.9
Semiconductor Physics Quantum Electronics & Optoelectronics Pub Date : 1997-01-01 DOI: 10.1364/qo.1997.qthd.2
B. Deveaud, S. Haacke, M. Hartig, R. Ambigapathy, I. B. Joseph, R. A. Taylor
{"title":"Femtosecond luminescence of semiconductor nanostructures","authors":"B. Deveaud, S. Haacke, M. Hartig, R. Ambigapathy, I. B. Joseph, R. A. Taylor","doi":"10.1364/qo.1997.qthd.2","DOIUrl":"https://doi.org/10.1364/qo.1997.qthd.2","url":null,"abstract":"Luminescence has been quite widely used for the study of semiconductor nanostructures, and more especially time resolved luminescence, due to the ease to get a luminescence signal. The interpretation of the results however is sometimes quite complex, and one generally finds that some care has to be taken for the results to be meaningful. In particular, the homogeneity of the excited density over the detected luminescence signal is a quite important parameter, also it is often desirable to work at the lowest possible densities.","PeriodicalId":44695,"journal":{"name":"Semiconductor Physics Quantum Electronics & Optoelectronics","volume":"116 3 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"1997-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82794675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coulomb Contributions to Exciton Saturation in Room Temperature GaAs-AlxGa1-xAs Multiple Quantum Wells 库仑对室温GaAs-AlxGa1-xAs多量子阱中激子饱和的贡献
IF 0.9
Semiconductor Physics Quantum Electronics & Optoelectronics Pub Date : 1997-01-01 DOI: 10.1364/qo.1997.qthd.3
M. Holden, GT Kennedy, A. Miller
{"title":"Coulomb Contributions to Exciton Saturation in Room Temperature GaAs-AlxGa1-xAs Multiple Quantum Wells","authors":"M. Holden, GT Kennedy, A. Miller","doi":"10.1364/qo.1997.qthd.3","DOIUrl":"https://doi.org/10.1364/qo.1997.qthd.3","url":null,"abstract":"A number of optoelectronic device applications of quantum well semiconductors depend on the saturation of exciton absorption features. Studies of exciton saturation at room temperature have resolved exciton-exciton interactions on timescales less than 300fs, and two distinct mechanisms based on phase space filling (PSF) and Coulomb effects caused by free carriers on longer timescales. Nonequilibrium carrier distributions were originally employed to separate Pauli exclusion and long range Coulomb effects [1]. More recently, optically induced circular dichroism was used to identify PSF and Coulomb exchange contributions [2]. However, Coulomb contributions can arise from both screening and collisional broadening. In this work, we have extended the use of circularly polarised ultrashort pulses to distinguish the two related Coulomb effects of screening and broadening and in addition, compared the relative contributions of excitons and free carriers to Coulomb contributions.","PeriodicalId":44695,"journal":{"name":"Semiconductor Physics Quantum Electronics & Optoelectronics","volume":"90 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"1997-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76856268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Picosecond Switching using Resonant Nonlinearities in a Quantum Well Device 在量子阱器件中使用共振非线性的皮秒开关
IF 0.9
Semiconductor Physics Quantum Electronics & Optoelectronics Pub Date : 1997-01-01 DOI: 10.1364/qo.1997.qthe.1
P. LiKamWa, A. Kan’an
{"title":"Picosecond Switching using Resonant Nonlinearities in a Quantum Well Device","authors":"P. LiKamWa, A. Kan’an","doi":"10.1364/qo.1997.qthe.1","DOIUrl":"https://doi.org/10.1364/qo.1997.qthe.1","url":null,"abstract":"Resonant nonlinearities in quantum well structures arise from exciton saturation and band-filling due to photogeneration of free carriers. Through the Kramers-Kronig’s relation, a corresponding change in refractive index occurs close to the bandgap energy where the absorption change occurs. The change in refractive index can effectively be used to produce optical switching in devices that can convert phase changes into intensity changes or directional switching1. Although the turn-on of carrier induced nonlinearities is effectively an instantaneous effect which follows the photon pulse, these photogenerated carriers tend to linger on well after the photon pulse has passed. The recovery time is usually governed by carrier relaxation times2,3 or carrier removal rates4. In this work, we demonstrate all-optical switching in a Y-junction device in which two control optical pulses are used for each switching event. The first control pulse flips the state of the switch while the second control pulse turns the switch back to its initial state. The switch dynamics is related to other carrier induced devices demonstrated by other independent researchers5,6.","PeriodicalId":44695,"journal":{"name":"Semiconductor Physics Quantum Electronics & Optoelectronics","volume":"19 7","pages":""},"PeriodicalIF":0.9,"publicationDate":"1997-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72460008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microcavity Semiconductor Lasers: Parameter Evaluation and Performances 微腔半导体激光器:参数评价与性能
IF 0.9
Semiconductor Physics Quantum Electronics & Optoelectronics Pub Date : 1997-01-01 DOI: 10.1364/qo.1997.qfb.3
G. Bava, P. Debernardi
{"title":"Microcavity Semiconductor Lasers: Parameter Evaluation and Performances","authors":"G. Bava, P. Debernardi","doi":"10.1364/qo.1997.qfb.3","DOIUrl":"https://doi.org/10.1364/qo.1997.qfb.3","url":null,"abstract":"Microcavity lasers have been shown to be promising devices owing to their characteristics such as very low threshold current, large modulation bandwidth, noise properties, etc. [1, 2, 3].","PeriodicalId":44695,"journal":{"name":"Semiconductor Physics Quantum Electronics & Optoelectronics","volume":"2019 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"1997-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74744545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simulation of High-Power Mid-IR Interband Cascade Laser 大功率中红外带间级联激光器的仿真
IF 0.9
Semiconductor Physics Quantum Electronics & Optoelectronics Pub Date : 1997-01-01 DOI: 10.1364/qo.1997.qfa.2
I. Vurgaftman, J. R. Meyer, Chris Felix, L. Ram-Mohan
{"title":"Simulation of High-Power Mid-IR Interband Cascade Laser","authors":"I. Vurgaftman, J. R. Meyer, Chris Felix, L. Ram-Mohan","doi":"10.1364/qo.1997.qfa.2","DOIUrl":"https://doi.org/10.1364/qo.1997.qfa.2","url":null,"abstract":"There is a critical need for high-power mid-infrared diode lasers to be used in such military and commercial applications as IR countermeasures, IR illumination, and long-range chemical sensing. To date, the highest reported cw output power from a semiconductor diode emitting in the 3-5 μm spectral region has been 215 mW/facet. This was obtained from a 250-μm stripe at 80 K,1 and cw operation has never been observed in a III-V diode laser above 175 K.2 Although output powers exceeding 1 W are readily attainable from near-IR (λ ≈ 1 μm) lasers operating at or near ambient temperature, mid-IR emitters are inherently at a disadvantage due to the inverse scaling of the differential slope efficiency (dP/dI) with wavelength. That is, while the same current is required to inject one electron-hole pair as in a near-IR diode laser, the energy of the photon that results is 3-5 times smaller. A recent breakthrough has been the demonstration that this fundamental limitation may be circumvented by employing a cascade geometry. The unipolar quantum cascade laser (QCL) of Faist et al.,3 which achieves lasing due to optical intersubband transitions, can in principle emit as many photons for each injected electron as there are periods in the structure. However, high cw operating temperatures and large cw output powers have not yet been reported, in part because the threshold current density is inevitably rather large owing to a rapid nonradiative phonon relaxation of the population inversion.","PeriodicalId":44695,"journal":{"name":"Semiconductor Physics Quantum Electronics & Optoelectronics","volume":"2 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"1997-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80432654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spin-Gratings and In-Well Carrier Transport Measurements in GaAs/AlGaAs Multiple Quantum Wells GaAs/AlGaAs多量子阱中的自旋光栅和阱内载流子输运测量
IF 0.9
Semiconductor Physics Quantum Electronics & Optoelectronics Pub Date : 1997-01-01 DOI: 10.1364/qo.1997.qthe.3
P. Riblet, AR Cameron, A. Miller
{"title":"Spin-Gratings and In-Well Carrier Transport Measurements in GaAs/AlGaAs Multiple Quantum Wells","authors":"P. Riblet, AR Cameron, A. Miller","doi":"10.1364/qo.1997.qthe.3","DOIUrl":"https://doi.org/10.1364/qo.1997.qthe.3","url":null,"abstract":"We have recently demonstrated [1] that transient electron spin gratings created by cross-polarised excitation pulses at a wavelength resonant with the heavy hole exciton, can provide a new and unique way of measuring in-well electron drift mobilities in semiconductor multiple quantum well structures. This compares with the usual transient grating method in which only the ambipolar diffusion coefficient can be determined [2]. A comparison of concentration and spin grating decay rates allows the direct measurement of both the electron and hole drift mobilities in the same sample. In this work we extend these measurements to GaAs/AlGaAs multiple quantum wells with different well widths and compare results obtained under conditions of exciton saturation and broadening.","PeriodicalId":44695,"journal":{"name":"Semiconductor Physics Quantum Electronics & Optoelectronics","volume":"111 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"1997-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77451553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anomalous Diffusion of Repulsive Bosons in a Two-Dimensional Random Potential 二维随机势中排斥玻色子的反常扩散
IF 0.9
Semiconductor Physics Quantum Electronics & Optoelectronics Pub Date : 1997-01-01 DOI: 10.1364/qo.1997.qthb.2
T. Fukuzawa, S. Y. Kim, T. Gustafson, E. Haller, E. Yamada
{"title":"Anomalous Diffusion of Repulsive Bosons in a Two-Dimensional Random Potential","authors":"T. Fukuzawa, S. Y. Kim, T. Gustafson, E. Haller, E. Yamada","doi":"10.1364/qo.1997.qthb.2","DOIUrl":"https://doi.org/10.1364/qo.1997.qthb.2","url":null,"abstract":"Two-dimensional (2D) bosons can undergo a Kosterlitz-Thouless transition[1], which does not involve macroscopic occupation of a single quantum state, but which can still result in superfluidity. In addition, strongly interacting bosons subject to a random potential can also exhibit superfluidity, as in the case of charged superfluidity that occurs in high-T c superconductors. Competition between the strength of the interaction and the degree of potential disorder are among the many complicated and competing factors which determine whether superfluidity is promoted or supressed in a Bose system[2]. Strong potential disorder forces bosons to localize and can result in an insulating Bose glass phase. Alternatively, repulsive interactions among bosons act to release them from their traps, to keep their inter-particle distances as uniform as the potential allows, and to arrange the flow direction. An appropriate interaction strength can thus promote superfluidity.","PeriodicalId":44695,"journal":{"name":"Semiconductor Physics Quantum Electronics & Optoelectronics","volume":"101 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"1997-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78378086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Subwavelength Multilayer Binary Grating Design for Implementing Photonic Crystals 实现光子晶体的亚波长多层二元光栅设计
IF 0.9
Semiconductor Physics Quantum Electronics & Optoelectronics Pub Date : 1997-01-01 DOI: 10.1364/qo.1997.qtha.4
R. Tyan, P. Sun, A. Salvekar, H. Chou, Chuan-cheng Cheng, F. Xu, A. Scherer, Y. Fainman
{"title":"Subwavelength Multilayer Binary Grating Design for Implementing Photonic Crystals","authors":"R. Tyan, P. Sun, A. Salvekar, H. Chou, Chuan-cheng Cheng, F. Xu, A. Scherer, Y. Fainman","doi":"10.1364/qo.1997.qtha.4","DOIUrl":"https://doi.org/10.1364/qo.1997.qtha.4","url":null,"abstract":"Subwavelength multilayer binary gratings (SMBG) can be seen as a 2-D periodic structures (see Fig.1a) with two periodic directions along the grating vector and the multilayer cascading direction. Such structures combine strong form- birefringence1,2 of the subwavelength grating with high reflectivity due the multilayer structure allowing us to design polarization sensitive microdevices, such as polarization selective mirror and polarizing beam splitter. Recently3 we introduce a new polarizing beam splitter (PBS) microdevice design built of SMBGs. Not only this novel design increases the angular and spectral range of the PBS microdevice in comparison to conventional PBS designs, but most importantly, our microdevice can operate with normally incident light, acting as a high-efficiency polarization-selective mirror. Microdevice with such features are critical for microlaser designs. Since the SMBG is a 2-D periodic structure, it can also be used to design a 2-D photonic crystal. In this manuscript, we summarize the design, modeling, and characterization of the SMBG structure designed to implement polarization sensitive microdevice, and also introduce and discuss a 2-D photonic crystal design based on SMBG.","PeriodicalId":44695,"journal":{"name":"Semiconductor Physics Quantum Electronics & Optoelectronics","volume":"31 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"1997-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87465869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信