{"title":"Superconductivity","authors":"K. W. Böer, U. W. Pohl","doi":"10.1007/978-3-030-23303-7","DOIUrl":"https://doi.org/10.1007/978-3-030-23303-7","url":null,"abstract":"","PeriodicalId":44695,"journal":{"name":"Semiconductor Physics Quantum Electronics & Optoelectronics","volume":"104 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2018-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85549026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Haché, Y. Kostoulas, R. Atanasov, J. Fraser, J. Sipe, H. V. van Driel
{"title":"Coherent Control Of Semiconductor Optoelectronic Properties","authors":"A. Haché, Y. Kostoulas, R. Atanasov, J. Fraser, J. Sipe, H. V. van Driel","doi":"10.1364/qo.1997.qwb.3","DOIUrl":"https://doi.org/10.1364/qo.1997.qwb.3","url":null,"abstract":"Historically, phase has received little attention as a parameter which can be used to control the properties of matter. Recently, however, coherence control of physical and chemical properties of simple systems using two or more laser beams has been demonstrated [1-3]. The possibility of influencing the phase of matter by controlling the phase of light arises from the fact that two or more phased perturbations which can connect the same initial and final states in a system can lead to interference effects between the different quantum mechanical pathways and therefore influence the final state of matter. In this talk we report two manifestations of this effect in bulk semiconductors, namely the generation and control of carrier density and electrical currents [3] in a bulk, unbiased semiconductor when both initial and final states are in the continuum (valence and conduction bands). The observations of such effects is not only intellectually appealing but may point the way to novel device applications. In initial experiments, control has been achieved in GaAs at room temperature using picosecond and 100 fs optical pulses at 1550 and 775 nm. The talk will focus on the description of these phenomena in terms of quantum mechanics as well as nonlinear optics. The influence of beam parameters and sample characteristics will be discussed.","PeriodicalId":44695,"journal":{"name":"Semiconductor Physics Quantum Electronics & Optoelectronics","volume":"30 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"1997-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72839681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Wavelength Stabilization and Trimming Technologies for Vertical Cavity Surface Emitting Lasers","authors":"F. Koyama, K. Iga","doi":"10.1364/qo.1997.qthe.7","DOIUrl":"https://doi.org/10.1364/qo.1997.qthe.7","url":null,"abstract":"Multi-wavelength integrated light sources are key devices for future large scale wavelength division multiplexing (WDM) systems. One of important issues is precise control of lasing wavelength of each element. Large temperature sensitivity of lasing wavelength is also a remaining problem. Recently, wavelength stabilization of semiconductor lasers using strain was demonstrated [1]. Also, wavelength trimming technique was proposed for post-process precise control of wavelength [2].","PeriodicalId":44695,"journal":{"name":"Semiconductor Physics Quantum Electronics & Optoelectronics","volume":"2 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"1997-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72873257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Type-II Superlattices for Infrared Optoelectronics and Lasers","authors":"R. Miles, M. Flatté","doi":"10.1364/qo.1997.qfa.3","DOIUrl":"https://doi.org/10.1364/qo.1997.qfa.3","url":null,"abstract":"Interest in broken-gap, type-II heterostructures for optoelectronic applications is predicated largely on their promise as infrared lasers, detectors, and modulators appreciably outperforming conventional devices. Cryogenic imaging arrays based on these structures are projected to perform with higher detectivities and/or at higher operating temperatures than competing systems based on HgCdTe or extrinsic materials. Lasers in the 3-5μm spectral band are expected to operate at or near room temperature with significant output powers, and modulators with unusually low insertion losses and high dynamic range have been proposed. Brought to maturity, applications of such devices would be numerous, ranging from environmental monitoring systems to short-link, high bandwidth optical communications.","PeriodicalId":44695,"journal":{"name":"Semiconductor Physics Quantum Electronics & Optoelectronics","volume":"29 6 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"1997-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75720711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Observation of Photonic Bandgap in GaInAsP/InP 2D Photonic Crystals by Equivalent Transmission Measurement","authors":"T. Baba, M. Ikeda, N. Kamizawa","doi":"10.1364/qo.1997.qtha.3","DOIUrl":"https://doi.org/10.1364/qo.1997.qtha.3","url":null,"abstract":"Semiconductor photonic crystals are promising candidates for realizing spontaneous emission control, i.e., enhancement of spontaneous emission rate (SER) and spontaneous emission factor. Schematic structure of various dimensions of photonic crystal and corresponding wave vector space inhibited by photonic bandgaps (PBGs) are summarized in Fig. 1. Due to the almost perfect PBG and single mode localized state, 3D structures are ideal. However, structures for optical wavelength range are still difficult to fabricate. We have studied 2D structures1,2) to confirm preliminary effects of photonic crystals. In this study, we simply predict the spontaneous emission control in 2D structures, and report the experiment to observe PBG in GaInAsP/InP 2D photonic crystals.","PeriodicalId":44695,"journal":{"name":"Semiconductor Physics Quantum Electronics & Optoelectronics","volume":"31 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"1997-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88226517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Novel configurations for optical parametric oscillators without any cavity","authors":"Yujie J. Ding, J. Khurgin, Seungjoon Lee","doi":"10.1364/qo.1997.qfd.4","DOIUrl":"https://doi.org/10.1364/qo.1997.qfd.4","url":null,"abstract":"Forward optical parametric oscillators (OPO’s) based on quasi-phase matching (QPM) were implemented in LiNbO3 [1], However, a forward OPO requires a cavity to establish oscillation. Harris [2] introduced the concept of a backward OPO (BOPO) based on conventional phase matching: a cavity is not required to establish oscillation. However, in Ref. [2], only a threshold condition was obtained. Here, we present our results on BOPO’s [3] and transversely-pumped counter-propagating OPO’s (TPCOPO’s) [4]. A TPCOPO does not require a cavity to establish oscillation either. Second-order susceptibility of a nonlinear medium is spatially modulated with a period the pump wavelength in the medium to achieve QPM. A pump wave at the wavelength in vacuum λ3 propagates along a waveguide for a BOPO or onto the surface for a TPCOPO. Two counter-propagating waves at the wavelengths λ1 and λ2 can be generated in the nonlinear medium. To tune the output frequencies of the signal and idler, we can change the incident angle of the pump wave in the TPCOPO or BOPO. The gain for the signal or idler is effectively balanced by the loss of the signal or idler at the respective exit plane to reach a steady-state oscillation. Because a cavity is eliminated, a BOPO or TPCOPO is more stable while a forward OPO is sensitive to the slight mirror translation. For a TPCOPO [4], there is an optimal pump power ≈3.4Pth (where Pth is the threshold, pump power) at which η reaches the maximum value of 44%. If P3≫Pth, there is a huge build-up of the oscillating fields inside the medium. The efficient sum-frequency generation saturates the TPCOPO. Consider GaAs/Al0.8Ga0.2 As multilayers [5] with the optimized structure dimensions: if λ3≈0.49μm, Pth≈7.3kW and tuning range: 1.4-2.6 μm (or 3.1-5.8 μm if λ3≈2μm). Consider ZnSe/ZnS multilayers: if λ3 ≈ 0.49 μm, Pth≈0.92kW and the tuning range: 0.7-1.7 μm, Consider GaAs/AlAs asymmetric coupled quantum-well domain structure [6]: if λ3 = 10 μm, Pth ≈ 10W and the tuning range: 15-29 μm. Consider a nondegenerate BOPO: |k1 − k2| ≫ 1/L, where k1,2 are the corresponding wave vectors and L is the length of the medium. If P3≈1.1 Pth, the conversion efficiency for the BOPO is η ≈ 20%. When P3 ≈ 3.4Pth, η ≈ 44% for the TPCOPO and η ≈ 95% for the BOPO. Consider a degenerate BOPO: λ1=λ2. A mirror for the pump wave with the reflectivity R2ω is attached to the right facet to increase the conversion efficiencies, However, it is not required for the oscillation to occur. When the pump intensity is Ip≈4I′th≈Ith/4, where Ith and I′th are the thresholds for a nearly-degenerate and degenerate BOPO, η ≈ 99.7% if R2ω=99%. Therefore, compared with the nondegenerate BOPO, the degenerate BOPO offers higher conversion efficiencies. The decrease of the conversion efficiency as Ip (>4I′th) increases is due to generation of a backward wave at the pump wavelength, which propagates along the direction opposite to that of the pump wave. Consider a poled LiNbO3 [1], If the spatia","PeriodicalId":44695,"journal":{"name":"Semiconductor Physics Quantum Electronics & Optoelectronics","volume":"38 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"1997-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90588077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microcavity Semiconductor Lasers: Parameter Evaluation and Performances","authors":"G. Bava, P. Debernardi","doi":"10.1364/qo.1997.qfb.3","DOIUrl":"https://doi.org/10.1364/qo.1997.qfb.3","url":null,"abstract":"Microcavity lasers have been shown to be promising devices owing to their characteristics such as very low threshold current, large modulation bandwidth, noise properties, etc. [1, 2, 3].","PeriodicalId":44695,"journal":{"name":"Semiconductor Physics Quantum Electronics & Optoelectronics","volume":"2019 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"1997-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74744545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Coulomb Contributions to Exciton Saturation in Room Temperature GaAs-AlxGa1-xAs Multiple Quantum Wells","authors":"M. Holden, GT Kennedy, A. Miller","doi":"10.1364/qo.1997.qthd.3","DOIUrl":"https://doi.org/10.1364/qo.1997.qthd.3","url":null,"abstract":"A number of optoelectronic device applications of quantum well semiconductors depend on the saturation of exciton absorption features. Studies of exciton saturation at room temperature have resolved exciton-exciton interactions on timescales less than 300fs, and two distinct mechanisms based on phase space filling (PSF) and Coulomb effects caused by free carriers on longer timescales. Nonequilibrium carrier distributions were originally employed to separate Pauli exclusion and long range Coulomb effects [1]. More recently, optically induced circular dichroism was used to identify PSF and Coulomb exchange contributions [2]. However, Coulomb contributions can arise from both screening and collisional broadening. In this work, we have extended the use of circularly polarised ultrashort pulses to distinguish the two related Coulomb effects of screening and broadening and in addition, compared the relative contributions of excitons and free carriers to Coulomb contributions.","PeriodicalId":44695,"journal":{"name":"Semiconductor Physics Quantum Electronics & Optoelectronics","volume":"90 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"1997-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76856268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Picosecond Switching using Resonant Nonlinearities in a Quantum Well Device","authors":"P. LiKamWa, A. Kan’an","doi":"10.1364/qo.1997.qthe.1","DOIUrl":"https://doi.org/10.1364/qo.1997.qthe.1","url":null,"abstract":"Resonant nonlinearities in quantum well structures arise from exciton saturation and band-filling due to photogeneration of free carriers. Through the Kramers-Kronig’s relation, a corresponding change in refractive index occurs close to the bandgap energy where the absorption change occurs. The change in refractive index can effectively be used to produce optical switching in devices that can convert phase changes into intensity changes or directional switching1. Although the turn-on of carrier induced nonlinearities is effectively an instantaneous effect which follows the photon pulse, these photogenerated carriers tend to linger on well after the photon pulse has passed. The recovery time is usually governed by carrier relaxation times2,3 or carrier removal rates4. In this work, we demonstrate all-optical switching in a Y-junction device in which two control optical pulses are used for each switching event. The first control pulse flips the state of the switch while the second control pulse turns the switch back to its initial state. The switch dynamics is related to other carrier induced devices demonstrated by other independent researchers5,6.","PeriodicalId":44695,"journal":{"name":"Semiconductor Physics Quantum Electronics & Optoelectronics","volume":"19 7","pages":""},"PeriodicalIF":0.9,"publicationDate":"1997-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72460008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
B. Deveaud, S. Haacke, M. Hartig, R. Ambigapathy, I. B. Joseph, R. A. Taylor
{"title":"Femtosecond luminescence of semiconductor nanostructures","authors":"B. Deveaud, S. Haacke, M. Hartig, R. Ambigapathy, I. B. Joseph, R. A. Taylor","doi":"10.1364/qo.1997.qthd.2","DOIUrl":"https://doi.org/10.1364/qo.1997.qthd.2","url":null,"abstract":"Luminescence has been quite widely used for the study of semiconductor nanostructures, and more especially time resolved luminescence, due to the ease to get a luminescence signal. The interpretation of the results however is sometimes quite complex, and one generally finds that some care has to be taken for the results to be meaningful. In particular, the homogeneity of the excited density over the detected luminescence signal is a quite important parameter, also it is often desirable to work at the lowest possible densities.","PeriodicalId":44695,"journal":{"name":"Semiconductor Physics Quantum Electronics & Optoelectronics","volume":"116 3 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"1997-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82794675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}