{"title":"Fault systems in multiply deformed regions of Eurasia","authors":"V. Burtman, S. Kolodyazhnyi","doi":"10.2205/2023es000811","DOIUrl":"https://doi.org/10.2205/2023es000811","url":null,"abstract":"We have studied the orogenic fragile deformation of the upper Earth's crust of several areas of the Eurasian continent, where deformations have occurred many times -- in the Tian Shan and Altai-Sayan regions of the Central Asian Paleozoic Fold Belt and in the Baltic region in the Fennoscandian Shield (East European Platform). Our processing of data on the trends of more than 4000 faults allows us to identify fault systems and relationships among these fault systems. Changes in the intensity and kinematics of the activity of fault systems in different epochs of deformation of regions are revealed. In the Tien Shan and Altai-Sayan regions, fault movements occurred during Early Paleozoic, Late Paleozoic and Late Cenozoic orogenies. No new fault systems appeared in the Late Cenozoic deformation in the Tien Shan, where only movement along Paleozoic faults that were suitably oriented occurred. In the Altai-Sayan region, we identify the Late Paleozoic associations of fault systems that activated in the recent epoch and the association of fault systems created in the Late Cenozoic. The Fennoscandian Shield shows different fault kinematics in four Early Proterozoic deformational periods. Our method of analysis of associations of fault systems contributes to a~systematization of data on multi-stage deformation in the upper crust of these regions.","PeriodicalId":44680,"journal":{"name":"Russian Journal of Earth Sciences","volume":"11 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85304279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Le, G. Vlasova, S. Lebedev, Tuan Nguyen, The Ho, Binh Tran, D. Nguyen
{"title":"Wave Regime of Vietnamese Waters on the Basis of Numerical Modeling and Field Measurements","authors":"M. Le, G. Vlasova, S. Lebedev, Tuan Nguyen, The Ho, Binh Tran, D. Nguyen","doi":"10.2205/2022es000816","DOIUrl":"https://doi.org/10.2205/2022es000816","url":null,"abstract":"This paper presents results of research of the wave regime in Vietnamese waters (South China Sea) based on the data of numerical modeling data using the WAM model (WAVE Modeling). The model domain covers the basin of the South China Sea (SCS). The bathymetry of the SCS used in the model is based on the ETOPO5 digital database. Wind parameters are based on the six-hour NCEP/NCAR reanalysis data with a resolution of ΔX = ΔY = 0.25° over the period 1979–2021. The field wave data measurements were collected by the Institute of Oceanography of Vietnam Academy of Science and Technology in the southern central Vietnamese waters in 2013. The statistical data of computed wave characteristics for the period of 43 years (1979–2021) illustrate that the main wave direction in Vietnamese waters was NE during the Northeastern (NE) monsoon, and in the opposite direction during the Southwestern (SW) monsoon. The NE monsoon wave was more dominant than that of the SW monsoon wave. Recurrence frequency (%) of significant wave height Hs >1.0 m (Hs – significant wave height is an average of 1/3 the largest of serial waves relative to average seawater level) greater than 50% \u0000covered the northeastern, central region of the SCS, and central Vietnamese coast. The wave recurrence frequency in the Gulf of Tonkin and Gulf of Thailand was <40% and <30%, respectively. The central Vietnamese coast from Ly Son Island to Phu Quy Island was the strongest affected by wave action. The recurrence frequency of the maximum significant wave height Hs >3.5 m was greater than 1.5%. The Gulf of Tonkin (Bach Long Vi Island) and the Gulf of Thailand (Tho Chu Island) were less affected by \u0000wave action than the central Vietnamese coast: the recurrence frequency of the maximum wave height (Hs>3.5 m) was less than 0.1%. Phu Quy and Con Dao Islands were more influenced by wave action during both seasons than the central coast of Vietnam.","PeriodicalId":44680,"journal":{"name":"Russian Journal of Earth Sciences","volume":"49 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79396746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Studying diurnal and secular variations of the Earth's magnetic field using data from Yangibazar magnetic observatory (Uzbekistan)","authors":"Valizhon Yusupov, A. Soloviev, R. Sidorov","doi":"10.2205/2022es000815","DOIUrl":"https://doi.org/10.2205/2022es000815","url":null,"abstract":"The article provides information about the Yangibazar geomagnetic observatory, managed by the Institute of Seismology of the Academy of Sciences of the Republic of Uzbekistan. The results of the study of magnetic field variations at the Yangibazar magnetic-ionospheric observatory and comparison of the average annual values of the magnetic field absolute magnitude with the main magnetic field of the Earth are demonstrated. A comparison is made between the diurnal variation of the geomagnetic field for four days on June 21–24, 2021 at the Yangibazar observatory and the diurnal variation for the same period at the nearby stations and observatories Alma-Ata (Kazakhstan) and Gyulagarak (Armenia), the absolute values of the magnetic field elements recorded at the observatory in the period 2010–2021 were also studied. The conclusion is made about the expediency of deploying high-precision geomagnetic measurements that meet the international standard on the basis of the Yangibazar observatory.","PeriodicalId":44680,"journal":{"name":"Russian Journal of Earth Sciences","volume":"55 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74998897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yulia Gordova, Silviya Kostovska, A. Barandeev, Olga Herzen, V. Polyakov, A. Chepalyga, A. Herzen
{"title":"Current Toponymic Problems (on the Materials of the two Scientific Events in 2021 in Simferopol and Moscow)","authors":"Yulia Gordova, Silviya Kostovska, A. Barandeev, Olga Herzen, V. Polyakov, A. Chepalyga, A. Herzen","doi":"10.2205/2022es000821","DOIUrl":"https://doi.org/10.2205/2022es000821","url":null,"abstract":"Employees of the Institute of Geography of the Russian Academy of Sciences, the Institute of Linguistics of the Russian Academy of Sciences and members of the Toponymical Commission of the Moscow City Branch of the Russian Geographical Society took part and acted as co-organizers of two important scientific events in 2021 dedicated to the study of toponymic problems – the scientific and practical conference “Historical toponyms are our common heritage” on July 28 in Simferopol, and the Moscow Onomastic Seminar on October 7 in Moscow. These events highlighted the range of the most pressing issues related to both the functioning of geographic names and the tasks that scientists, politicians and officials face in this respect, those being the preservation of historical place names of Crimea; place names in multinational regions; the consequences of toponymic repressions; the use of well-known toponymic bases when naming other objects; the importance of microtoponymy for landscape research; the dependence of a toponym spelling on the status of a geographical object; the choice between parallel names of one settlement; the difference in connotations of the same toponyms; \u0000toponymic expeditions as a tool for solving etymological problems. On the one hand, the problems discussed determine the vector of modern place-name study development, on the other hand, they affect the adoption of successful state decisions.","PeriodicalId":44680,"journal":{"name":"Russian Journal of Earth Sciences","volume":"75 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2022-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88443509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"\"Danjon Effect\", Solar-Triggered Volcanic Activity, and Relation to Climate Change","authors":"B. Komitov, V. Kaftan","doi":"10.2205/2022es000803","DOIUrl":"https://doi.org/10.2205/2022es000803","url":null,"abstract":"The “Danjon effect” is a phenomenon that presents a tendency to concentrate the so-called “dark” total lunar eclipses (DTLE) near solar sunspot cycle minimum phases. It was a starting point for the present study, whose main subject is a statistical analysis of relationship between solar and volcanic activity for the maximum long time. To this end, the Smithsonian National Museum of Natural History's volcanic activity catalog was used. On its basis, a time series of the total annual volcanic eruptions for the period 1551–2020 AD has been built and explored for cycles of possible solar origin. Cycles with duration of 10–11, 19–25, ∼60, and ∼240 years (all with possible solar origin) has been established. It has also been found that there are two certain peaks of volcanic activity during the sunspot activity cycle: the first one is close to or after the sunspot minimum (sunspot cycle phase 0.9 ≤ Φ ≤1.0 and 0.1 ≤ Φ ≤ 0.2), and the second is wider – close to the sunspot cycle maximum (0.3 ≤ Φ ≤ 0.5). A third maximum is detected about 3–4 years after the sunspot cycle maximum (0.7 ≤ Φ ≤ 0.8) for the “moderate strong” volcanic eruptions with volcanic eruptive index VEI = 5. It corresponds to the geomagnetic activity secondary maximum, which usually occurs 3–4 years after the sunspot maximum. Φ is calculated separately on the basis of each sunspot cycle length. Finally, without any exclusions, all most powerful volcanic eruptions for which VEI ≥ 6 are centered near the ∼11-year Schwabe-Wolf cycle extremes. Trigger mechanisms of solar and geomagnetic activity over volcanic events, as well as their relation to climate change (in interaction with galactic cosmic rays (GCR) and/or solar energetic particles (SEP)), are discussed. The Pinatubo eruption in 1991 as an example of a “pure” strong solar–volcanism relationship has been analyzed in detail.","PeriodicalId":44680,"journal":{"name":"Russian Journal of Earth Sciences","volume":"77 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77443816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abdul Baser Qasimi, Vahid Isazade, Gordana Kaplan, Zabihullah Nadry
{"title":"Spatiotemporal and multi-sensor analysis of surface temperature, NDVI, and precipitation using google earth engine cloud computing platform","authors":"Abdul Baser Qasimi, Vahid Isazade, Gordana Kaplan, Zabihullah Nadry","doi":"10.2205/2022es000812","DOIUrl":"https://doi.org/10.2205/2022es000812","url":null,"abstract":"Vegetation, precipitation, and surface temperature are three important elements of the environment. By increasing the concerns about climate change and global warming, monitoring vegetation dynamics are considered to be crucial. In this study, the cross-relationship between vegetation, surface temperature, and precipitation, and their fluctuations over the past 21 years are evaluated. Day time LST from Terra sensor of MODIS, nir and red bands of Landsat 7 ETM+ and Landsat 8 OLI, and Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) are used in this research. Data were evaluated and processed using the google earth engine cloud processing platform. According to the results, it was concluded that the correlations between the annual average of normalized difference vegetation index and precipitation are not significant. Evaluation of the cross-seasonal correlations exhibited the availability of the strong and significant correlation with a value of r2 = 0.82 between vegetation thickness and precipitation, during the spring and summer, especially from April to August. Moreover, surface temperature exposed an inverse correlation with precipitation and NDVI with the values of r2= 0.776 and r2= 0.68 respectively, these relationships are highly significant. According to the results of this study, vegetation declined sharply in particular years, and this decrease occurred due to insufficient rainfalls.","PeriodicalId":44680,"journal":{"name":"Russian Journal of Earth Sciences","volume":"126 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88662033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Petrunin, A. Soloviev, R. Sidorov, Alexei Gvishiani
{"title":"Inverse-forward method for heat flow estimation: case study for the Arctic region","authors":"A. Petrunin, A. Soloviev, R. Sidorov, Alexei Gvishiani","doi":"10.2205/2022es000809","DOIUrl":"https://doi.org/10.2205/2022es000809","url":null,"abstract":"The heat flow data are important in many aspects including interpretation of various geophysical observations, solutions of important engineering problems, modelling of the ice dynamics, and related environmental assessment. However, the distribution of the direct measurements is quite heterogeneous over the Earth. Different methods have been developed during past decades to create continuous maps of the geothermal heat flow (GHF). Most of them are based on the principle of similarity of GHF values for the lithosphere with comparable age and tectonic history or inversion of magnetic field data. Probabilistic approach was also used to realize this principle. In this paper, we present a new method for extrapolating the GHF data, based on the inversion of a geophysical data set using optimization problem solution. We use the results of inversion of seismic and magnetic field data into temperature and data from direct heat flow measurements. We use the Arctic as the test area because it includes the lithosphere of different ages, types, and tectonic settings. In result, the knowledge of GHF is important here for various environmental problems. The resulting GHF map obtained well fits to the observed data and clearly reflects the lithospheric domains with different tectonic history and age. The new GHF map constructed in this paper reveals some significant features that were not identified earlier. In particular, these are the increased GHF zones in the Bering Strait, the Chukchi Sea and the residual GHF anomaly in the area of the Mid-Labrador Ridge. The latter was active during the Paleogene.","PeriodicalId":44680,"journal":{"name":"Russian Journal of Earth Sciences","volume":"5 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90218040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Thermodynamic model of the deep origin of oil and its phase \"freezing\"","authors":"S. Marakushev, O. Belonogova","doi":"10.2205/2022es000807","DOIUrl":"https://doi.org/10.2205/2022es000807","url":null,"abstract":"Based on the deep inorganic concept of the origin of oil and gas deposits, the evolution of these petrogenic reservoirs in the lithosphere is considered. The analysis of phase diagrams and experimental data made it possible to determine two trends in the evolution of non-methane hydrocarbons in the Earth's interior. In the upper mantle, the \"metastability\" of heavy (with a lower H/C ratio) hydrocarbons increases with depth. However, at temperatures and pressures corresponding to the surface mantle-crustal hydrothermal conditions, the “relative metastability” of heavy hydrocarbons increases with approach to the surface. When deep HCs fluids rise to the surface, petrogenic oil reservoirs are formed as a result of a drop in hydrogen fugacity and a gas → liquid oil phase transition. Under the physical and chemical conditions of an oil reservoir, metastable reversible phase equilibria are established between liquid oil, gas hydrocarbons and CO2 and solid (pseudocrystalline) \"mature\" and \"immature\" kerogens of \"oil source\" rocks. A decrease in hydrogen pressure and temperature leads to a stoichiometric phase transition (“freezing”) of liquid oil into solid kerogens. This occurs as a result of oil dehydrogenation in the processes of high-temperature CO2 fixation and low-temperature hydration of oil hydrocarbons, which are the main geochemical pathways for its transformation into kerogen. Thus, the formation of carbon matter in petrogenic reservoirs is the result of regressive metamorphism of deep hydrocarbon fluids, natural gas, liquid oil, and emerging accumulations of naphthides.","PeriodicalId":44680,"journal":{"name":"Russian Journal of Earth Sciences","volume":"72 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76482938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bjerknes compensation mechanism as a possible trigger of the low-frequency variability of Arctic amplification","authors":"Mikhail M. Latonin, I. Bashmachnikov, L. Bobylev","doi":"10.2205/2022es000820","DOIUrl":"https://doi.org/10.2205/2022es000820","url":null,"abstract":"The causes of Arctic amplification are widely debated, and a cohesive picture has not been obtained yet. This study has investigated the role of the Atlantic meridional oceanic and atmospheric heat transport into the Arctic in the emergence of Arctic amplification. The integral advective fluxes in the layer of Atlantic waters and in the lower troposphere were considered. The results show a strong coupling between the meridional heat fluxes and regional Arctic amplification in the Eurasian Arctic on the decadal time scales (10–15 years). We argue that the low-frequency variability of Arctic amplification is regulated via the chain of oceanic heat transport — atmospheric heat transport — Arctic amplification. The atmospheric response to the ocean influence occurs with a delay of three years and is attributed to the Bjerknes compensation mechanism. In turn, the atmospheric heat and moisture transport directly affects the magnitude of Arctic amplification, with the latter lagging by one year. Thus, the variability of oceanic heat transport at the southern boundary of the Nordic Seas might be a predictor of the Arctic amplification magnitude over the Eurasian Basin of the Arctic Ocean with a lead time of four years. The results are consistent with the concept of the decadal Arctic climate variability expressed via the Arctic Ocean Oscillation index.","PeriodicalId":44680,"journal":{"name":"Russian Journal of Earth Sciences","volume":"11 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73099829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tatyana Aksenovich, V. Bilin, Yaroslav Saharov, V. Selivanov
{"title":"Wavelet analysis of geomagnetically induced currents during the strong geomagnetic storms","authors":"Tatyana Aksenovich, V. Bilin, Yaroslav Saharov, V. Selivanov","doi":"10.2205/2022es000825","DOIUrl":"https://doi.org/10.2205/2022es000825","url":null,"abstract":"The main problem of electric utilities around the world is to ensure continuous power supply to consumers. One of the causes of power outages and blackouts can be geomagnetic storms during periods of the increased solar activity. They arouse geomagnetically induced currents (GICs) flowing in the long-distance high-voltage power grids on Earth’s surface. The history of this phenomenon investigation shows that GICs during strong geomagnetic storms had led to blackouts in certain regions of Canada, Sweden and the USA. To study these phenomena and assess the risks of such accidents for the regional system, a GICs registration system in 330 kV autotransformers neutrals of the Kola-Karelian power transit was developed in northwestern Russia. During 11 years of monitoring numerous cases of the flow of high values of quasi-dc currents with different time durations, induced by variations of the geomagnetic field, have been registered. In order to analyze the currents a wavelet transform was chosen, since this method allows to define not only the frequency composition but also changes in spectral characteristics over time, which is significant in the study of GIC. The paper presents a discussion of GIC scalograms obtained for four events of Solar Cycle 24: 13-14 November 2012, 17-18 March 2015, 7-8 September 2015 and 7-8 September 2017. The analysis showed that the characteristic duration of the peak of the considered GICs is from 4.6 to 11.1 min.","PeriodicalId":44680,"journal":{"name":"Russian Journal of Earth Sciences","volume":"1 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90189484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}