Journal of Geodetic Science最新文献

筛选
英文 中文
GPS measurements on pre-, co- and post-seismic surface deformation at first multi-parametric geophysical observatory, Ghuttu in Garhwal Himalaya, India 印度Ghuttu首个多参数地球物理观测站地震前、地震中和地震后地表变形的GPS测量
IF 1.3
Journal of Geodetic Science Pub Date : 2020-01-01 DOI: 10.1515/jogs-2020-0114
P. Gautam, S. Rajesh, N. Kumar, C. P. Dabral
{"title":"GPS measurements on pre-, co- and post-seismic surface deformation at first multi-parametric geophysical observatory, Ghuttu in Garhwal Himalaya, India","authors":"P. Gautam, S. Rajesh, N. Kumar, C. P. Dabral","doi":"10.1515/jogs-2020-0114","DOIUrl":"https://doi.org/10.1515/jogs-2020-0114","url":null,"abstract":"Abstract We investigate the surface deformation pattern of GPS station at MPGO Ghuttu (GHUT) to find out the cause of anomalous behavior in the continuous GPS time series. Seven years (2007-2013) of GPS data has been analyzed using GAMIT/GLOBK software and generated the daily position time series. The horizontal translational motion at GHUT is 43.7 ± 1 mm/yr at an angle of 41°± 3° towards NE, while for the IGS station at LHAZ, the motion is 49.4 ±1 mm/yr at 18 ± 2.5° towards NEE. The estimated velocity at GHUT station with respect to IISC is 12 ± 1 mm/yr towards SW. Besides, we have also examined anomalous changes in the time series of GHUT before, after and during the occurrences of local earthquakes by considering the empirical strain radius; such that, a possible relationship between the strain radius and the occurrences of earthquakes have been explored. We considered seven local earthquakes on the basis of Dobrovolsky strain radius condition having magnitude from 4.5 to 5.7, which occurred from 2007 to 2011. Results show irrespective of the station strain radius, pre-seismic surface deformational anomalies are observed roughly 70 to 80 days before the occurrence of a Moderate or higher magnitude events. This has been observed for the cases of those events originated from the Uttarakashi and the Chamoli seismic zones in the Garhwal and Kumaun Himalaya. Occurrences of short (< 100 days) and long (two years) inter-seismic events in the Garhwal region plausibly regulating and diffusing the regional strain accumulation.","PeriodicalId":44569,"journal":{"name":"Journal of Geodetic Science","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91191975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Systematic bias of selected estimates applied in vertical displacement analysis 垂直位移分析中所选估计的系统偏差
IF 1.3
Journal of Geodetic Science Pub Date : 2020-01-01 DOI: 10.1515/jogs-2020-0103
P. Wyszkowska, R. Duchnowski
{"title":"Systematic bias of selected estimates applied in vertical displacement analysis","authors":"P. Wyszkowska, R. Duchnowski","doi":"10.1515/jogs-2020-0103","DOIUrl":"https://doi.org/10.1515/jogs-2020-0103","url":null,"abstract":"Abstract In surveying problems we almost always use unbiased estimators; however, even unbiased estimator might yield biased assessments, which is due to data. In statistics one distinguishes several types of such biases, for example, sampling, systemic or response biases. Considering surveying observation sets, bias from data might result from systematic or gross errors of measurements. If nonrandom errors in an observation set are known, then bias can easily be determined for linear estimates (e.g., least squares estimates). In the case of non-linear estimators, it is not so simple. In this paper we are focused on a vertical displacement analysis and we consider traditional least squares estimate, two Msplitestimates and two basic robust estimates, namely M-estimate, R-estimate. The main aim of the paper is to assess estimate biases empirically by applying Monte Carlo method. The smallest biases are obtained for M- and R-estimates, especially for a high magnitude of a gross error. On the other hand, there are several cases when Msplitestimates are the best. Such results are acquired when the magnitude of a gross error is moderate or small. The outcomes confirm that bias of Msplitestimates might vary for different point displacements.","PeriodicalId":44569,"journal":{"name":"Journal of Geodetic Science","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76456612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
On the application of nature-inspired grey wolf optimizer algorithm in geodesy 启发自然的灰狼优化算法在大地测量中的应用
IF 1.3
Journal of Geodetic Science Pub Date : 2020-01-01 DOI: 10.1515/jogs-2020-0107
Mevlut Yetkin, O. Bilginer
{"title":"On the application of nature-inspired grey wolf optimizer algorithm in geodesy","authors":"Mevlut Yetkin, O. Bilginer","doi":"10.1515/jogs-2020-0107","DOIUrl":"https://doi.org/10.1515/jogs-2020-0107","url":null,"abstract":"Abstract Nowadays, solving hard optimization problems using metaheuristic algorithms has attracted bountiful attention. Generally, these algorithms are inspired by natural metaphors. A novel metaheuristic algorithm, namely Grey Wolf Optimization (GWO), might be applied in the solution of geodetic optimization problems. The GWO algorithm is based on the intelligent behaviors of grey wolves and a population based stochastic optimization method. One great advantage of GWO is that there are fewer control parameters to adjust. The algorithm mimics the leadership hierarchy and hunting mechanism of grey wolves in nature. In the present paper, the GWO algorithm is applied in the calibration of an Electronic Distance Measurement (EDM) instrument using the Least Squares (LS) principle for the first time. Furthermore, a robust parameter estimator called the Least Trimmed Absolute Value (LTAV) is applied to a leveling network for the first time. The GWO algorithm is used as a computing tool in the implementation of robust estimation. The results obtained by GWO are compared with the results of the ordinary LS method. The results reveal that the use of GWO may provide efficient results compared to the classical approach.","PeriodicalId":44569,"journal":{"name":"Journal of Geodetic Science","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85189864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Spherical approximating and interpolating moving least squares in geodesy and geophysics: a case study for deriving gravity acceleration at sea surface in the Persian Gulf 球面逼近和插值在大地测量学和地球物理学中的移动最小二乘:波斯湾海面重力加速度的实例研究
IF 1.3
Journal of Geodetic Science Pub Date : 2020-01-01 DOI: 10.1515/jogs-2020-0112
M. Kiani
{"title":"Spherical approximating and interpolating moving least squares in geodesy and geophysics: a case study for deriving gravity acceleration at sea surface in the Persian Gulf","authors":"M. Kiani","doi":"10.1515/jogs-2020-0112","DOIUrl":"https://doi.org/10.1515/jogs-2020-0112","url":null,"abstract":"Abstract This paper is aimed at introducing the concept of Spherical Interpolating Moving Least Squares to the problems in geodesy and geophysics. Based on two previously known methods, namely Spherical Moving Least Squares and Interpolating Moving Least Squares, a simple theory is formulated for using Spherical Moving Least Squares as an interpolant. As an application, a case study is presented in which gravity accelerations at sea surface in the Persian Gulf are derived, using both the approximation and interpolation mode of the Spherical Moving Least Squares. The roles of the various elements in the methods-weight function, scaling parameter, and the degree of spherical harmonics as the basis functions-are investigated. Then, the results of approximation and interpolation are compared with the field data at sea surface, collected by shipborne gravimetry approach. Finally, the results are compared with another independent interpolation method-spline interpolation. It is shown that in this particular problem, SMLS approximation and SIMLS interpolation present a better accuracy than spherical splines.","PeriodicalId":44569,"journal":{"name":"Journal of Geodetic Science","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90285421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Fitting a triaxial ellipsoid to a geoid model 将三轴椭球体拟合到大地水准面模型上
IF 1.3
Journal of Geodetic Science Pub Date : 2020-01-01 DOI: 10.1515/jogs-2020-0105
G. Panou, R. Korakitis, G. Pantazis
{"title":"Fitting a triaxial ellipsoid to a geoid model","authors":"G. Panou, R. Korakitis, G. Pantazis","doi":"10.1515/jogs-2020-0105","DOIUrl":"https://doi.org/10.1515/jogs-2020-0105","url":null,"abstract":"Abstract The aim of this work is the determination of the parameters of Earth’s triaxiality through a geometric fitting of a triaxial ellipsoid to a set of given points in space, as they are derived from a geoid model. Starting from a Cartesian equation of an ellipsoid in an arbitrary reference system, we develop a transformation of its coefficients into the coordinates of the ellipsoid center, of the three rotation angles and the three ellipsoid semi-axes. Furthermore, we present different mathematical models for some special and degenerate cases of the triaxial ellipsoid. We also present the required mathematical background of the theory of least-squares, under the condition of minimization of the sum of squares of geoid heights. Also, we describe a method for the determination of the foot points of the set of given space points. Then, we prepare suitable data sets and we derive results for various geoid models, which were proposed in the last fifty years. Among the results, we report the semi-axes of the triaxial ellipsoid of geometric fitting with four unknowns to be 6378171.92 m, 6378102.06 m and 6356752.17 m and the equatorial longitude of the major semi-axis –14.9367 degrees. Also, the parameters of Earth’s triaxiality are directly estimated from the spherical harmonic coefficients of degree and order two. Finally, the results indicate that the geoid heights with reference to the triaxial ellipsoid are smaller than those with reference to the oblate spheroid and the improvement in the corresponding rms value is about 20 per cent.","PeriodicalId":44569,"journal":{"name":"Journal of Geodetic Science","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87976074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
The certitude of a global sea level acceleration during the satellite altimeter era 卫星高度计时代全球海平面加速的确定性
IF 1.3
Journal of Geodetic Science Pub Date : 2020-01-01 DOI: 10.1515/jogs-2020-0101
H. Iz, C. Shum
{"title":"The certitude of a global sea level acceleration during the satellite altimeter era","authors":"H. Iz, C. Shum","doi":"10.1515/jogs-2020-0101","DOIUrl":"https://doi.org/10.1515/jogs-2020-0101","url":null,"abstract":"Abstract Recent studies reported a uniform global sea level acceleration during the satellite altimetry era (1993–2017) by analyzing globally averaged satellite altimetry measurements. Here, we discuss potential omission errors that were not thoroughly addressed in detecting and estimating the reported global sea level acceleration in these studies. Our analyses results demonstrate that the declared acceleration in recent studies can also be explained equally well by alternative kinematic models based on previously well-established multi-decadal global mean sea level variations of various origins, which suggests prudence before declaring the presence of an accelerating global mean sea level with confidence during the satellite altimetry era.","PeriodicalId":44569,"journal":{"name":"Journal of Geodetic Science","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83165308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Evaluation of ocean circulation models in the computation of the mean dynamic topography for geodetic applications. Case study in the Greek seas 海洋环流模式在大地测量应用中平均动力地形计算中的评价。希腊海域的案例研究
IF 1.3
Journal of Geodetic Science Pub Date : 2019-01-01 DOI: 10.1515/jogs-2019-0015
I. Mintourakis, G. Panou, D. Paradissis
{"title":"Evaluation of ocean circulation models in the computation of the mean dynamic topography for geodetic applications. Case study in the Greek seas","authors":"I. Mintourakis, G. Panou, D. Paradissis","doi":"10.1515/jogs-2019-0015","DOIUrl":"https://doi.org/10.1515/jogs-2019-0015","url":null,"abstract":"Abstract Precise knowledge of the oceanic Mean Dynamic Topography (MDT) is crucial for a number of geodetic applications, such as vertical datum unification and marine geoid modelling. The lack of gravity surveys over many regions of the Greek seas and the incapacity of the space borne gradiometry/gravity missions to resolve the small and medium wavelengths of the geoid led to the investigation of the oceanographic approach for computing the MDT. We compute two new regional MDT surfaces after averaging, for given epochs, the periodic gridded solutions of the Dynamic Ocean Topography (DOT) provided by two ocean circulation models. These newly developed regional MDT surfaces are compared to three state-of-theart models, which represent the oceanographic, the geodetic and the mixed oceanographic/geodetic approaches in the implementation of the MDT, respectively. Based on these comparisons, we discuss the differences between the three approaches for the case study area and we present some valuable findings regarding the computation of the regional MDT. Furthermore, in order to have an estimate of the precision of the oceanographic approach, we apply extensive evaluation tests on the ability of the two regional ocean circulation models to track the sea level variations by comparing their solutions to tide gauge records and satellite altimetry Sea Level Anomalies (SLA) data. The overall findings support the claim that, for the computation of the MDT surface due to the lack of geodetic data and to limitations of the Global Geopotential Models (GGMs) in the case study area, the oceanographic approach is preferable over the geodetic or the mixed oceano-graphic/geodetic approaches.","PeriodicalId":44569,"journal":{"name":"Journal of Geodetic Science","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74204661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study of water storage variations at the Pantanal wetlands area from GRACE monthly mass grids 基于GRACE月质量网格的潘塔纳尔湿地储水量变化研究
IF 1.3
Journal of Geodetic Science Pub Date : 2019-01-01 DOI: 10.1515/jogs-2019-0013
A. Pereira, Cecilia Cornero, Ana Matos, M. C. Pacino, D. Blitzkow
{"title":"Study of water storage variations at the Pantanal wetlands area from GRACE monthly mass grids","authors":"A. Pereira, Cecilia Cornero, Ana Matos, M. C. Pacino, D. Blitzkow","doi":"10.1515/jogs-2019-0013","DOIUrl":"https://doi.org/10.1515/jogs-2019-0013","url":null,"abstract":"Abstract The continental water storage is significantly in-fluenced by wetlands, which are highly affected by climate change and anthropogenic influences. The Pantanal, located in the Paraguay river basin, is one of the world’s largest and most important wetlands because of the environmental biodiversity that represents. The satellite gravity mission GRACE (Gravity Recovery And Climate Experiment) provided until 2017 time-variable Earth’s gravity field models that reflected the variations due to mass transport processes-like continental water storage changes-which allowed to study environments such as wetlands, at large spatial scales. The water storage variations for the period 2002-2016, by using monthly land water mass grids of Total Water Storage (TWS) derived from GRACE solutions, were evaluated in the Pantanal area. The capability of the GRACE mission for monitoring this particular environment is analyzed, and the comparison of the water mass changes with rainfall and hydrometric heights data at different stations distributed over the Pantanal region was carried out. Additionally, the correlation between the TWS and river gauge measurements, and the phase differences for these variables, were also evaluated. Results show two distinct zones: high correlations and low phase shifts at the north, and smaller correlation values and consequently significant phase differences towards the south. This situation is mainly related to the hydrogeological domains of the area.","PeriodicalId":44569,"journal":{"name":"Journal of Geodetic Science","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80418346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Plate Coupling Mechanism of the Central Andes Subduction: Insight from Gravity Model 中安第斯俯冲的板块耦合机制:来自重力模型的启示
IF 1.3
Journal of Geodetic Science Pub Date : 2019-01-01 DOI: 10.1515/jogs-2019-0002
R. Mahatsente
{"title":"Plate Coupling Mechanism of the Central Andes Subduction: Insight from Gravity Model","authors":"R. Mahatsente","doi":"10.1515/jogs-2019-0002","DOIUrl":"https://doi.org/10.1515/jogs-2019-0002","url":null,"abstract":"Abstract The Central Andes experienced major earthquake (Mw =8.2) in April 2014 in a region where the giant 1877 earthquake (Mw=8.8) occurred. The 2014 Iquique earthquake did not break the entire seismic gap zones as previously predicted. Geodetic and seismological observations indicate a highly coupled plate interface. To assess the locking mechanism of plate interfaces beneath Central Andes, a 2.5-D gravity model of the crust and upper mantle structure of the central segment of the subduction zone was developed based on terrestrial and satellite gravity data from the LAGEOS, GRACE and GOCE satellite missions. The densities and major structures of the gravity model are constrained by velocity models from receiver function and seismic tomography. The gravity model defined details of crustal and slab structure necessary to understand the cause of megathrust asperity generation. The densities of the upper and lower crust in the fore-arc (2970 – 3000 kg m−3) are much higher than the average density of continental crust. The high density bodies are interpreted as plutonic or ophiolitic structures emplaced onto continental crust. The plutonic or ophiolitic structures may be exerting pressure on the Nazca slab and lock the plate interfaces beneath the Central Andes subduction zone. Thus, normal pressure exerted by high density fore-arc structures and buoyancy force may control plate coupling in the Central Andes. However, this interpretation does not exclude other possible factors controlling plate coupling in the Central Andes. Seafloor roughness and variations in pore-fluid pressure in sediments along subduction channel can affect plate coupling and asperity generation.","PeriodicalId":44569,"journal":{"name":"Journal of Geodetic Science","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78638272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Mass variation observing system by high low inter-satellite links (MOBILE) – a new concept for sustained observation of mass transport from space 高低星间链路质量变化观测系统——从空间持续观测质量传输的新概念
IF 1.3
Journal of Geodetic Science Pub Date : 2019-01-01 DOI: 10.1515/jogs-2019-0006
R. Pail, J. Bamber, R. Biancale, R. Bingham, C. Braitenberg, A. Eicker, F. Flechtner, T. Gruber, A. Güntner, G. Heinzel, M. Horwath, L. Longuevergne, J. Müller, I. Panet, H. Savenije, S. Seneviratne, N. Sneeuw, T. V. van Dam, B. Wouters
{"title":"Mass variation observing system by high low inter-satellite links (MOBILE) – a new concept for sustained observation of mass transport from space","authors":"R. Pail, J. Bamber, R. Biancale, R. Bingham, C. Braitenberg, A. Eicker, F. Flechtner, T. Gruber, A. Güntner, G. Heinzel, M. Horwath, L. Longuevergne, J. Müller, I. Panet, H. Savenije, S. Seneviratne, N. Sneeuw, T. V. van Dam, B. Wouters","doi":"10.1515/jogs-2019-0006","DOIUrl":"https://doi.org/10.1515/jogs-2019-0006","url":null,"abstract":"Abstract As changes in gravity are directly related to mass variability, satellite missions observing the Earth’s time varying gravity field are a unique tool for observing mass transport processes in the Earth system, such as the water cycle, rapid changes in the cryosphere, oceans, and solid Earth processes, on a global scale. The observation of Earth’s gravity field was successfully performed by the GRACE and GOCE satellite missions, and will be continued by the GRACE Follow-On mission. A comprehensive team of European scientists proposed the next-generation gravity field mission MOBILE in response to the European Space Agency (ESA) call for a Core Mission in the frame of Earth Explorer 10 (EE10). MOBILE is based on the innovative observational concept of a high-low tracking formation with micrometer ranging accuracy, complemented by new instrument concepts. Since a high-low tracking mission primarily observes the radial component of gravity-induced orbit perturbations, the error structure is close to isotropic. This geometry significantly reduces artefacts of previous along-track ranging low-low formations (GRACE, GRACE-Follow-On) such as the typical striping patterns. The minimum configuration consists of at least two medium-Earth orbiters (MEOs) at 10000 km altitude or higher, and one low-Earth orbiter (LEO) at 350-400 km. The main instrument is a laser-based distance or distance change measurement system, which is placed at the LEO. The MEOs are equipped either with passive reflectors or transponders. In a numerical closed-loop simulation, it was demonstrated that this minimum configuration is in agreement with the threshold science requirements of 5 mm equivalent water height (EWH) accuracy at 400 km wavelength, and 10 cm EWH at 200 km. MOBILE provides promising potential future perspectives by linking the concept to existing space infrastructure such as Galileo next-generation, as future element of the Copernicus/Sentinel programme, and holds the potential of miniaturization even up to swarm configurations. As such MOBILE can be considered as a precursor and role model for a sustained mass transport observing system from space.","PeriodicalId":44569,"journal":{"name":"Journal of Geodetic Science","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75830225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信