Coordinate transformation parameters in Nepal by using neural network and SVD methods

IF 0.9 Q4 REMOTE SENSING
K. Ansari, P. Gyawali, P. Pradhan, Kwan-Dong Park
{"title":"Coordinate transformation parameters in Nepal by using neural network and SVD methods","authors":"K. Ansari, P. Gyawali, P. Pradhan, Kwan-Dong Park","doi":"10.1515/jogs-2019-0003","DOIUrl":null,"url":null,"abstract":"Abstract The present study computes B-W extension model (extended Bursa-Wolf model) coordinate transformation parameters from World Geodetic System 1984 (WGS-84) to the Everest datum namely Everest (1830) and Everest (1956) using records of coordinate measurements from Global Positioning System (GPS) observable across Nepal region. Synthetic or modeled coordinates were determined by using the Artificial Neural Network (ANN) and Singular Value Decomposition (SVD) methods. We studied 9-transformation parameters with the help of the ANN technique and validated the outcomes with the SVD method. The comparative analysis of the ANN, as well as SVD methods, was done with the observed output following one way ANOVA test. The analysis showed that the null hypothesis for both datums were acceptable and suggesting all models statistically significantly equivalent to each other. The outcomes from this study would complement a relatively better understanding of the techniques for coordinate transformation and precise coordinate assignment while assimilating data sets from different resources.","PeriodicalId":44569,"journal":{"name":"Journal of Geodetic Science","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geodetic Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jogs-2019-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 7

Abstract

Abstract The present study computes B-W extension model (extended Bursa-Wolf model) coordinate transformation parameters from World Geodetic System 1984 (WGS-84) to the Everest datum namely Everest (1830) and Everest (1956) using records of coordinate measurements from Global Positioning System (GPS) observable across Nepal region. Synthetic or modeled coordinates were determined by using the Artificial Neural Network (ANN) and Singular Value Decomposition (SVD) methods. We studied 9-transformation parameters with the help of the ANN technique and validated the outcomes with the SVD method. The comparative analysis of the ANN, as well as SVD methods, was done with the observed output following one way ANOVA test. The analysis showed that the null hypothesis for both datums were acceptable and suggesting all models statistically significantly equivalent to each other. The outcomes from this study would complement a relatively better understanding of the techniques for coordinate transformation and precise coordinate assignment while assimilating data sets from different resources.
基于神经网络和奇异值分解方法的尼泊尔坐标变换参数
摘要本文利用尼泊尔地区全球定位系统(GPS)的坐标测量记录,计算了从世界大地测量系统1984 (WGS-84)到珠穆朗玛峰基准面(1830年)和珠穆朗玛峰(1956年)的B-W扩展模型(扩展Bursa-Wolf模型)坐标转换参数。利用人工神经网络(ANN)和奇异值分解(SVD)方法确定合成坐标或建模坐标。我们利用人工神经网络技术研究了9个变换参数,并用SVD方法验证了结果。对人工神经网络和SVD方法进行比较分析,并对观察到的输出进行单向方差分析检验。分析表明,两个基准的零假设都是可以接受的,并且表明所有模型在统计上彼此显着相等。本研究的结果将补充相对更好地理解坐标转换和精确坐标分配技术,同时吸收来自不同资源的数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geodetic Science
Journal of Geodetic Science REMOTE SENSING-
CiteScore
1.90
自引率
7.70%
发文量
3
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信