Madhu Krishna Karthan, D. Kuna, Perumalla Naveen Kumar
{"title":"Effect of satellite availability and time delay of corrections on position accuracy of differential NavIC","authors":"Madhu Krishna Karthan, D. Kuna, Perumalla Naveen Kumar","doi":"10.1515/jogs-2022-0169","DOIUrl":"https://doi.org/10.1515/jogs-2022-0169","url":null,"abstract":"\u0000 The position accuracy of standalone Navigation with Indian Constellation (NavIC) may not be met for certain applications like civil aviation. To improve the position accuracy of the user receiver, the technique used is Differential NavIC, which makes use of Differential corrections. The position accuracy of the user receiver also depends on the satellite availability (i.e. number of satellites available at a certain time instant to estimate the user position) and delay in transmission of differential corrections. In this article, the analysis of differential NavIC using different numbers of visible satellites (satellite availability) and different time delays for transmission of corrections is carried out. For this analysis, three cases are considered, Case I is when all (six) NavIC satellites are visible, Case II is when five satellites (3 Geosynchronous Orbit (GSO) and 2 Geostationary Earth Orbit (GEO)) are visible, and Case III is when five satellites (3 GEO and 2 GSO) are visible. The comparative analysis for these three cases is carried out with respect to the position accuracy parameters and Geometric Dilution of Precision. It is observed that, with the satellite availability in case I and case III, the user receiver accuracy is approximately the same. In case III, the accuracy of the user receiver (3.08 m) is similar to the accuracy (3.09 m) in case I. For time delay in transmission of corrections, different time delays (0, 5, 10, 20, …, 300 s) are considered to observe the effect on the positional accuracy of the user receiver. Due to the increase in this time delay, there is a significant degradation in the user receiver position accuracy of differential NavIC.","PeriodicalId":44569,"journal":{"name":"Journal of Geodetic Science","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140524308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Çırmık, O. Ankaya Pamukçu, F. Doğru, A. Cingöz, Ö. Özdağ, H. Sözbilir
{"title":"Displacement analysis of the October 30, 2020 (M\u0000 w = 6.9), Samos (Aegean Sea) earthquake","authors":"A. Çırmık, O. Ankaya Pamukçu, F. Doğru, A. Cingöz, Ö. Özdağ, H. Sözbilir","doi":"10.1515/jogs-2022-0166","DOIUrl":"https://doi.org/10.1515/jogs-2022-0166","url":null,"abstract":"\u0000 Destructive earthquakes with high deformations have occurred in the Aegean region since the historical period. The most destructive of these earthquakes in recent years is the October 30, 2020 (M\u0000 w = 6.9) Samos (Aegean Sea) earthquake. This earthquake affected a wide area and caused numerous losses of lives and property especially in Izmir city. For examining the effects of the earthquake, Global Navigation Satellite System (GNSS) data before, during, and after the earthquake were processed, and coseismic and postseismic displacement evaluations were made. Interferometric Synthetic Aperture Radar (InSAR) ascending, descending interferograms, line of sight velocity, and displacement maps were obtained for the earthquake-affected area. The GNSS and InSAR data were evaluated together, and the areas with subsidence and uplift were determined in conjunction with the fault zone. In addition, the horizontal displacements were analyzed by using Coulomb failure criteria, and peak ground displacements were obtained from the strong motion stations located in the study region. As a result, from all the displacement analyses, it was determined that high-amplitude energy was released, at the regional scale from Ayvalık in the North to Datça in the South after the earthquake, and this earthquake generated permanent deformation in the affected region.","PeriodicalId":44569,"journal":{"name":"Journal of Geodetic Science","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139632797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}