The topographic bias in gravimetric geoid determination revisited

IF 0.9 Q4 REMOTE SENSING
L. Sjöberg
{"title":"The topographic bias in gravimetric geoid determination revisited","authors":"L. Sjöberg","doi":"10.1515/jogs-2019-0007","DOIUrl":null,"url":null,"abstract":"Abstract The topographic potential bias at geoid level is the error of the analytically continued geopotential from or above the Earth’s surface to the geoid. We show that the topographic potential can be expressed as the sum of two Bouguer shell components, where the density distribution of one is spherical symmetric and the other is harmonic at any point along the normal to a sphere through the computation point. As a harmonic potential does not affect the bias, the resulting topographic bias is that of the first component, i.e. the spherical symmetric Bouguer shell. This implies that the so-called terrain potential is not likely to contribute significantly to the bias. We present three examples of the geoid bias for different topographic density distributions.","PeriodicalId":44569,"journal":{"name":"Journal of Geodetic Science","volume":"9 1","pages":"59 - 64"},"PeriodicalIF":0.9000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geodetic Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jogs-2019-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract The topographic potential bias at geoid level is the error of the analytically continued geopotential from or above the Earth’s surface to the geoid. We show that the topographic potential can be expressed as the sum of two Bouguer shell components, where the density distribution of one is spherical symmetric and the other is harmonic at any point along the normal to a sphere through the computation point. As a harmonic potential does not affect the bias, the resulting topographic bias is that of the first component, i.e. the spherical symmetric Bouguer shell. This implies that the so-called terrain potential is not likely to contribute significantly to the bias. We present three examples of the geoid bias for different topographic density distributions.
重测大地水准面确定中的地形偏差
大地水准面位势偏差是地球表面或地表以上的解析连续位势与大地水准面位势的误差。我们证明了地形势可以表示为两个布格壳分量的和,其中一个密度分布是球对称的,另一个密度分布是谐波的,在任何点沿着球的法线通过计算点。由于谐波电位不影响偏置,因此得到的地形偏置是第一个分量,即球面对称布格壳的偏置。这意味着所谓的地形潜力不太可能对偏差做出重大贡献。我们给出了三个不同地形密度分布的大地水准面偏差的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geodetic Science
Journal of Geodetic Science REMOTE SENSING-
CiteScore
1.90
自引率
7.70%
发文量
3
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信