Water ResearchPub Date : 2024-11-16DOI: 10.1016/j.watres.2024.122799
Peitian Huang, Yun Chen, Siwei Yu, Yan Zhou
{"title":"Propionic Acid Enhances H2 Production in Purple Phototrophic Bacteria: Insights into Carbon and Reducing Equivalent Allocation","authors":"Peitian Huang, Yun Chen, Siwei Yu, Yan Zhou","doi":"10.1016/j.watres.2024.122799","DOIUrl":"https://doi.org/10.1016/j.watres.2024.122799","url":null,"abstract":"Biohydrogen is gaining popularity as a clean and cost-effective energy source. Among the various production methods, photo fermentation (PF) with purple phototrophic bacteria (PPB) has shown great opportunity due to its high hydrogen yield. In practice, this yield is influenced by several factors, with the carbon source, particularly simple organic acid, being a key element that has attracted considerable research interest. Short-chain volatile fatty acids (VFAs), such as acetate, propionate, and butyrate, are widely found in waste streams and dark fermentation (DF) effluent. However, most studies on these VFAs focus mainly on performance evaluation, with few exploring the underlying mechanisms, which limits their applicability in real-world scenarios. To uncover the metabolic mechanisms, this study uses metagenomics to clarify the processes of reducing power production and distribution during substrate assimilation. Meanwhile, this study presents the impact of short-chain VFAs on biohydrogen, polyhydroxyalkanoates (PHA) and glycogen production by PPB. The results show that: (1) over long-term cultivation at similar COD consumption rates of 0.06 g COD/d, PPB possessed the highest hydrogen yield when fed with propionate (0.620 L H<sub>2</sub>·g COD<sup>-1</sup>) compared with butyrate (0.434) and acetate (0.361); (2) with propionate as the substrate, PPB accumulated less PHA (7% of dry biomass) but more glycogen content (11%), compared to butyrate (15% PHA and 8% glycogen) and acetate (21% PHA and 5% glycogen); (3) metagenomic analysis revealed that propionate resulted in the highest amounts of reducing equivalents, followed by butyrate and acetate; hydrogen production was the most efficient pathway for utilizing the reducing power with propionate, as the CO<sub>2</sub> fixation and PHA or glycogen synthesis were ineffective for electron dissipation. This study offers insights into metabolic mechanism that could guide waste stream selection and pretreatment processes to provide favorable VFAs for the PF process, thereby enhancing PPB biohydrogen production performance in practical applications.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"25 1","pages":""},"PeriodicalIF":12.8,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142642590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Water ResearchPub Date : 2024-11-15DOI: 10.1016/j.watres.2024.122752
Kishore Kumar Jagadeesan , Kathryn Proctor , Richard Standerwick , Ruth Barden , Barbara Kasprzyk-Hordern
{"title":"Corrigendum to “Predicting pharmaceutical concentrations and assessing risks in the aquatic environment using PERK: A case study of a catchment area in South-West England” [Water Research, Volume 268, Part A, 1 January 2025, 122643]","authors":"Kishore Kumar Jagadeesan , Kathryn Proctor , Richard Standerwick , Ruth Barden , Barbara Kasprzyk-Hordern","doi":"10.1016/j.watres.2024.122752","DOIUrl":"10.1016/j.watres.2024.122752","url":null,"abstract":"","PeriodicalId":443,"journal":{"name":"Water Research","volume":"268 ","pages":"Article 122752"},"PeriodicalIF":11.4,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142611665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Water ResearchPub Date : 2024-11-15DOI: 10.1016/j.watres.2024.122800
Minpeng Hu, Zhongjie Yu, Timothy J. Griffis, John M. Baker
{"title":"Combining stable isotopes and spatial stream network modelling to disentangle the roles of hydrological and biogeochemical processes on riverine nitrogen dynamics","authors":"Minpeng Hu, Zhongjie Yu, Timothy J. Griffis, John M. Baker","doi":"10.1016/j.watres.2024.122800","DOIUrl":"https://doi.org/10.1016/j.watres.2024.122800","url":null,"abstract":"Intensive agricultural activities have significantly altered watershed hydrological and biogeochemical processes, resulting in water quality issues and loss of ecosystem functions and biodiversity. A major challenge in effectively mitigating nitrogen (N) loss from agricultural watersheds stems from the heterogeneity of N transformation and transport processes that complicates accurate quantification and modeling of N sources and sinks at the watershed scale. This study utilized stable isotopes of water and nitrate (NO<sub>3</sub><sup>−</sup>) in conjunction with spatial stream network modeling (SSNMs) to explore watershed hydrology, N transformation, and sources within a mesoscale river network in the U.S. Corn Belt (Cannon River Watershed, Minnesota) under contrasting hydrological conditions. The results show that the wet season had elevated riverine NO<sub>3</sub><sup>−</sup> concentration (medium: 8.4 mg N L<sup>−1</sup>), driven by high watershed wetness conditions that mobilizes NO<sub>3</sub><sup>−</sup> from the near-surface source zone. Furthermore, the strong hydrologic connectivity also reduced the denitrification potential by shortening water travel times. In comparison, the dry season showed lower NO<sub>3</sub><sup>−</sup> concentrations (0.9 mg N L<sup>−1</sup>) and stronger denitrification NO<sub>3</sub><sup>−</sup> isotope signals. During this period, the decrease in hydrologic connectivity shifted the predominant water source to deep groundwater, with longer water travel time promoting denitrification. After accounting for isotopic fractionations during nitrification and denitrification, we identified fertilizer N as the main NO<sub>3</sub><sup>−</sup> source during the wet season (98.2±1.3%), whereas the dry season showed contributions from diverse sources (64.4±11.9% fertilizer, 26.0±15.8% soil N, and 9.5±6.0% manure and sewage). During the dry season, karst regions with high hydrologic connectivity display increased shallow groundwater inputs, carrying elevated NO<sub>3</sub><sup>−</sup> levels from leaching of applied chemical fertilizers. These findings highlight the importance of integrating drainage water management and N accumulation in groundwater into nutrient management strategies to develop adaptive measures for controlling N pollution in agricultural watersheds.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"47 1","pages":""},"PeriodicalIF":12.8,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142642591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Water ResearchPub Date : 2024-11-15DOI: 10.1016/j.watres.2024.122798
Zhenju Sun, Jianzheng Li, Jia Meng, Jiuling Li
{"title":"Small-data-trained model for predicting nitrate accumulation in one-stage partial nitritation-anammox processes controlled by oxygen supply rate","authors":"Zhenju Sun, Jianzheng Li, Jia Meng, Jiuling Li","doi":"10.1016/j.watres.2024.122798","DOIUrl":"https://doi.org/10.1016/j.watres.2024.122798","url":null,"abstract":"Nitrate (NO<sub>3</sub><sup>−</sup>-N) accumulation is the biggest obstacle for wastewater treatment via partial nitritation-anammox process. Dissolved oxygen (DO) control is the most used strategy to prevent NO<sub>3</sub><sup>−</sup>-N accumulation, but the performance is usually unstable. This study proposes a novel strategy for controlling NO<sub>3</sub><sup>−</sup>-N accumulation based on oxygen supply rate (OSR). In comparison, limiting the OSR is more effective than limiting DO in controlling NO<sub>3</sub><sup>−</sup>-N accumulation through mathematical simulation. A laboratory-scale one-stage partial nitritation-anammox system was continuously operated for 135 days, which was divided into five stages with different OSRs. A novel deep learning model integrating Gated Recurrent Unit and Multilayer Perceptron was developed to predict NO<sub>3</sub><sup>−</sup>-N accumulation load. To tackle with the general obstacle of limited environmental samples, a generic evaluation was proposed to optimise the model structure by leveraging predictive performance and overfitting risk. The developed model successfully predicted the NO<sub>3</sub><sup>−</sup>-N accumulation in the system for ten days, showcasing its potential contribution to system design and performance enhancement.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"42 1","pages":""},"PeriodicalIF":12.8,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Water ResearchPub Date : 2024-11-14DOI: 10.1016/j.watres.2024.122790
Xin Hou, Lei Zhang, Yong Zhao, Jiamin Li, Ziming Jiang, Sen Wang, Xiaoran Li, Xiaotong Wang, Xianhua Liu
{"title":"Changes in microbial communities across the whole A2/O wastewater treatment process and their drivers - Reduced community diversity but increased proportion of certain pathogens","authors":"Xin Hou, Lei Zhang, Yong Zhao, Jiamin Li, Ziming Jiang, Sen Wang, Xiaoran Li, Xiaotong Wang, Xianhua Liu","doi":"10.1016/j.watres.2024.122790","DOIUrl":"https://doi.org/10.1016/j.watres.2024.122790","url":null,"abstract":"Microorganisms play a crucial role in pollutant removal and water quality stabilizing. However, limited research exists on the microbial variability and the factors driving it at different stages of wastewater treatment. In this study, the physicochemical properties of water and the composition of bacterial communities were thoroughly investigated across the entire A<sup>2</sup>/O wastewater treatment process, encompassing 3 stages (12 steps). The results revealed a significant reduction in alpha diversity, whereas the beta diversity remained largely unchanged across stages. Alpha diversity was primarily influenced by dissolved oxygen (DO) and pH, with DO having the most notable influence, while beta diversity was mainly constrained by nutrient conditions such as COD, BOD<sub>5</sub>, NH<sub>4</sub>-N, TN, and TP. Additionally, analyses of relative abundance, LEfSe, variance, and functional prediction indicated a significant increase in the relative abundance of certain pathogenic bacteria (e.g., <em>Legionella, Leptospira</em>), exhibiting different removal characteristics compared to <em>Escherichia coli</em> across various treatment steps. Even after UV disinfection, these pathogens persist, highlighting a potential pathogenic risk, which deserves more attention. In addition, this study helps explore the relatively under-researched area of microbial variability at different stages (steps) of wastewater treatment, especially in terms of how microbial communities respond to operational processes and environmental conditions. This will offer valuable guidance for addressing water treatment safety challenges encountered in real-world processes.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"91 1","pages":""},"PeriodicalIF":12.8,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Water ResearchPub Date : 2024-11-13DOI: 10.1016/j.watres.2024.122760
Yan Lu , Tao Liu , Hui Wang , Lukun Zuo , Shihu Hu , Zhiguo Yuan , Wayne Bagg , Jianhua Guo
{"title":"Gas-delivery membrane as an alternative aeration method to remove dissolved methane from anaerobically treated wastewater","authors":"Yan Lu , Tao Liu , Hui Wang , Lukun Zuo , Shihu Hu , Zhiguo Yuan , Wayne Bagg , Jianhua Guo","doi":"10.1016/j.watres.2024.122760","DOIUrl":"10.1016/j.watres.2024.122760","url":null,"abstract":"<div><div>Dissolved methane is a hurdle for anaerobic wastewater treatment, which would be stripped into the atmosphere by conventional bubble aeration and increase the release of greenhouse gases into the environment. The high oxygen transfer efficiency and less turbulence in membrane aerated biofilm reactor (MABR) could prevent the stripping of dissolved methane. In this study, an MABR was established to remove dissolved methane aerobically in parallel to the nitrogen removal driven by the anammox process. The long-term results demonstrated that aerobic methane oxidation has a short start-up period, in which a high level (>90 %) of dissolved methane removal was achieved in 20 days. Meanwhile, the anammox-based nitrogen removal process reached a total nitrogen removal rate of ∼150 mg N/L/d (0.27 g N/m<sup>2</sup>/d). In situ batch tests confirmed the active bioreactions of ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, anammox bacteria and aerobic methanotrophs, while 16S rRNA gene amplicon sequencing further validated their existence. Moreover, nitrite/nitrate-dependent anaerobic methane oxidation (n-DAMO) bacteria were enriched to a relative abundance of 2.5 % on Day 372, suggesting their potential role in removing nitrogen and dissolved methane in the MABR. This study provides an alternative technology for removing dissolved methane and nitrogen in parallel from anaerobically treated wastewater.</div></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"268 ","pages":"Article 122760"},"PeriodicalIF":11.4,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Water ResearchPub Date : 2024-11-13DOI: 10.1016/j.watres.2024.122773
Feng Wang , Wenxuan Huang , Jiale Chen , Yuting Luo , Jiashun Cao , Fang Fang , Xuran Liu , Yang Wu , Jingyang Luo
{"title":"Non-antibiotic disinfectant synchronously interferes methane production and antibiotic resistance genes propagation during sludge anaerobic digestion: Activation of microbial adaptation and reconfiguration of bacteria-archaea synergies","authors":"Feng Wang , Wenxuan Huang , Jiale Chen , Yuting Luo , Jiashun Cao , Fang Fang , Xuran Liu , Yang Wu , Jingyang Luo","doi":"10.1016/j.watres.2024.122773","DOIUrl":"10.1016/j.watres.2024.122773","url":null,"abstract":"<div><div>Waste activated sludge (WAS) presents both resource recovery potential and pollution risks, making its efficient treatment challenging. Anaerobic digestion is broadly recognized as a green and sustainable approach to WAS treatment, whose efficiency is easily impacted by the exogeneous pollutants in WAS. However, the impact of polyhexamethylene guanidine (PHMG), as a widely-used non-antibiotic disinfectant, on WAS digestion under semi-continuous flow conditions remains unclear. In this study, CH<sub>4</sub> production decreased from 16.1 mL/g volatile suspended solids (VSS) in the control to 13.2 mL/g VSS and 0.3 mL/g VSS under low and high PHMG exposure, respectively, while PHMG increased the number of antibiotic resistance gene (ARG) copies per bacterium by 4.6–12.7 %. Molecular docking analysis revealed that PHMG could spontaneously bind to and disintegrate WAS (binding energy:2.35 and -9.62 kcal/mol), increasing the likelihood of microbial exposure to PHMG. This led to an increase in bacterial abundance and a reduction in archaeal populations, resulting in bacterial dominance in ecological niches. The network topology index in PHMG-treated reactors was consistently lower than in the control, with a higher proportion of negatively correlated links, indicating a more antagonistic relationship between bacteria and archaea. Consequently, PHMG significantly interfered with key genes involved in CH<sub>4</sub> biosynthesis (<em>e.g., mch</em> and <em>mtd</em>). Interestingly, methanogenic activity and archaeal chemotaxis (<em>e.g., rfk</em> and <em>cheA</em>) partially recovered under low PHMG exposure due to archaeal adaptation through quorum sensing and two-component systems. However, this adaptation process also contributed to the propagation of ARGs through horizontal gene transfer, facilitated by the enhancement of mobile genetic elements and ARGs hosts. These findings confirm the ecological risks of PHMG and highlight the need for effective WAS disposal strategies.</div></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"268 ","pages":"Article 122773"},"PeriodicalIF":11.4,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Water ResearchPub Date : 2024-11-12DOI: 10.1016/j.watres.2024.122785
Yangbo Qiu , Chao Wang , Ran Li , Lidong Feng , Shuaijun Yu , Jiangnan Shen , Long-Fei Ren , Jiahui Shao
{"title":"Dual-ion permeation Janus membrane-assisted element reconstitution system enables fluorosilicate-oriented recovery from fluoride-rich and silica-rich wastewaters","authors":"Yangbo Qiu , Chao Wang , Ran Li , Lidong Feng , Shuaijun Yu , Jiangnan Shen , Long-Fei Ren , Jiahui Shao","doi":"10.1016/j.watres.2024.122785","DOIUrl":"10.1016/j.watres.2024.122785","url":null,"abstract":"<div><div>Rapid development of semiconductor manufacturing and photovoltaic industry leads to significant generation of fluoride-rich and silica-rich wastewaters. Due to the emphasis on circular economy and resource recovery, there is a shift from regarding wastewater as waste to a recoverable resource. In this study, we present a uniquely designed dual-ion permeation Janus membrane (DPM)-assisted element reconstitution system (MERS) for selective recovery of high-value fluorosilicates from fluoride-rich and silica-rich wastewaters. The MERS with a configuration of cation-exchange membrane/bipolar membrane/DPM/anion-exchange membrane/cation-exchange membrane achieved HF formation in silica chamber and further SiF<sub>6</sub><sup>2-</sup> generation from the reaction of HF with SiO<sub>2</sub>. Driven by the electric field, SiF<sub>6</sub><sup>2-</sup> was then transported through DPM into acid chamber for fluorosilicates selective recovery. The DPM with positively-charged nanoporous substrate/negatively charged active layer enhanced electrostatic interaction for SiF<sub>6</sub><sup>2-</sup>/H<sup>+</sup> transport and steric exclusion for coexisting foulants rejection. Ion transport mechanism analysis demonstrated DPM enhanced SiF<sub>6</sub><sup>2-</sup> migration while inhibiting back diffusion by electrostatic interaction and steric exclusion. Through the application of DPM, MERS showed rejections over 99 % for nanoparticles and over 90 % for organics. Thus, MERS stably selectively recovered SiF<sub>6</sub><sup>2-</sup> with recovery rate over 85 % and fluorosilicates purity over 99.5 %. Compared to traditional technologies, MERS achieved valuable resource recovery with the advantages of simple operation, small footprint and no secondary pollutant generation. Overall, this study provides a new strategy for simultaneous recovery of fluoride and silica from different waste streams, enabling a more sustainable strategy for semiconductor and photovoltaic industries development.</div></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"268 ","pages":"Article 122785"},"PeriodicalIF":11.4,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Water ResearchPub Date : 2024-11-10DOI: 10.1016/j.watres.2024.122782
Dong Liu , Chenxue Zhang , Nuoxiao Yan , Yao Yan , Hongtao Duan
{"title":"Eutrophication exacerbated organic pollution in lakes across China during the 1980s–2010s","authors":"Dong Liu , Chenxue Zhang , Nuoxiao Yan , Yao Yan , Hongtao Duan","doi":"10.1016/j.watres.2024.122782","DOIUrl":"10.1016/j.watres.2024.122782","url":null,"abstract":"<div><div>Lakes are vital sources of drinking water and essential habitats for humans and various other living organisms. However, many lakes face organic pollution due to anthropogenic disturbance and climatic influence, and the spatiotemporal changes of organic pollution in lakes over a large area are still unclear. Based on three monitoring datasets of chemical oxygen demand (COD) in 390 lakes, this study demonstrated the apparent spatiotemporal differences of organic pollution in lakes during the 1980s–2010s and the effects of water eutrophication and salinization. Throughout China, lake organic pollution showed a general spatial trend of being more severe in the north compared to the south. This pattern is reflected in the positive linear correlations between <em>in-situ</em> COD concentrations and lake latitude, observed in both the 1980s (<em>p</em> < 0.05) and the 2010s (<em>p</em> < 0.01). In terms of spatial differences, the influence of total nitrogen concentrations increased from 0.27% in the 1980s to 35.24% in the 2010s. Moreover, with increasing human activity, 78.31% of the studied lakes (<em>N</em> = 83) showed increasing COD concentrations during the 1980s–2010s. In addition, the logarithmic dissolved organic carbon concentrations were linearly correlated with log water conductivities (Pearson's <em>r</em> = 0.49, <em>p</em> < 0.01), suggesting that lake expansion would attenuate organic pollution in saline lakes through dilution effects. These results are valuable for understanding the spatiotemporal dynamics of organic pollution and are crucial for effective management of organic pollution in different lakes.</div></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"268 ","pages":"Article 122782"},"PeriodicalIF":11.4,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Water ResearchPub Date : 2024-11-10DOI: 10.1016/j.watres.2024.122781
Sergěj Y.M.H. Seepma , Janou A. Koskamp , Michel G. Colin , Eleftheria Chiou , Rubayat Sobhan , Tim F.J. Bögels , Tom Bastiaan , Hadi Zamanian , Eric T. Baars , Peter J. de Moel , Mariëtte Wolthers , Onno J.I. Kramer
{"title":"Mechanistic model advancements for optimal calcium removal in water treatment: Integral operation improvements and reactor design strategies","authors":"Sergěj Y.M.H. Seepma , Janou A. Koskamp , Michel G. Colin , Eleftheria Chiou , Rubayat Sobhan , Tim F.J. Bögels , Tom Bastiaan , Hadi Zamanian , Eric T. Baars , Peter J. de Moel , Mariëtte Wolthers , Onno J.I. Kramer","doi":"10.1016/j.watres.2024.122781","DOIUrl":"10.1016/j.watres.2024.122781","url":null,"abstract":"<div><div>Drinking water softening has primarily prioritized public health, environmental benefits, social costs and enhanced client comfort. Annually, over 35 billion cubic meters of water is softened worldwide, often utilizing three main techniques: nanofiltration, ion exchange and seeded crystallization by pellet softening. However, recent modifications in pellet softening, including changes in seeding materials and acid conditioning used post-softening, have not fully achieved desired flexibility and optimization. This highlights the need of an integral approach, as drinking water softening is just one step in the drinking water treatment chain, which includes ozonation, softening, biological active carbon filtration (BACF) and sand filtration among others. In addition, pellet softening is often practiced based on operator knowledge, lacking practical key reactor performance indicators (KPIs) for efficient control. For that reason, we propose a newly and improved integral mechanistic model designed to accurately predict (1) calcite removal rates in drinking water through seeded crystallization in pellet softening reactors, (2) the saturation of the filter bed in the subsequent treatment step, (3) values for the KPIs steering the softening efficiency. Our new mechanistic model integrates insights from hydrodynamics, thermodynamics, mass transfer kinetics, nucleation and reactor engineering, focussing on critical variables such as temperature, linear velocity, pellet particle size and saturation index with respect to calcite. Our model was validated with data from the Waternet Weesperkarspel drinking water treatment plant in Amsterdam, The Netherlands, but implies universal applicability for addressing industrial challenges beyond drinking water softening. The implementation of our model proposes five effective KPIs to optimize the softening process, chemical usage, and reactor design. The advantage of this model is that it eliminates the application of numerical methods and fills a significant gap in the field by providing predictions of the carry-over (i.e., the produced CaCO<sub>3</sub> fines leaving the fluidized bed) from water softening practices. With our model, the calcium removal rate is predicted with an average standard deviation (SD) of 40 % and the consequential clogging prediction of the BACF bed with an average SD of 130 %. Ultimately, our model provides crucial insights for operational management and decision-making in drinking water treatment plants, steering towards a more circular and environmentally sustainable process.</div></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"268 ","pages":"Article 122781"},"PeriodicalIF":11.4,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}