Dimas Ahmad Nur Kholis Suhermanto, Widi Aribowo, Hisham A. Shehadeh, R. Rahmadian, M. Widyartono, A. Wardani, Aditya Chandra Hermawan
{"title":"Monitoring DC Motor Based On LoRa and IOT","authors":"Dimas Ahmad Nur Kholis Suhermanto, Widi Aribowo, Hisham A. Shehadeh, R. Rahmadian, M. Widyartono, A. Wardani, Aditya Chandra Hermawan","doi":"10.18196/jrc.v5i1.19642","DOIUrl":"https://doi.org/10.18196/jrc.v5i1.19642","url":null,"abstract":"Electrical energy efficiency is a dynamic in itself that continues to be driven by electrical energy providers. In this work, long-range (LoRa) technology is used to monitor DC motors. In the modern world, IoT is becoming increasingly prevalent. Embedded systems are now widely used in daily life. More can be done remotely in terms of control and monitoring. LoRa is a new technology discovered and developing rapidly. LoRa technology addresses the need for battery-operated embedded devices. LoRa technology is a long-range, low-power technology. In this investigation, a LoRa transmitter and a LoRa receiver were employed. This study employed a range of cases to test the LoRa device. In the first instance, there are no barriers, whereas there are in the second instance. The results of the two trials showed that the LoRa transmitter and receiver had successful communication. In this study, the room temperature is used to control DC motors. So that the DC motor's speed adjusts to fluctuations in the room's temperature. Additionally, measuring tools and the sensors utilised in this investigation were contrasted. The encoder sensor and the INA 219 sensor were the two measured sensors employed in this study. According to the findings of the experiment, the tool was functioning properly.","PeriodicalId":443428,"journal":{"name":"Journal of Robotics and Control (JRC)","volume":"129 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140514099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ramdan Satra, M. Hadi, S. Sujito, F. Febryan, Muhammad Hattah Fattah, S. R. Busaeri
{"title":"IoAT: Internet of Aquaculture Things for Monitoring Water Temperature in Tiger Shrimp Ponds with DS18B20 Sensors and WeMos D1 R2","authors":"Ramdan Satra, M. Hadi, S. Sujito, F. Febryan, Muhammad Hattah Fattah, S. R. Busaeri","doi":"10.18196/jrc.v5i1.18470","DOIUrl":"https://doi.org/10.18196/jrc.v5i1.18470","url":null,"abstract":"Cultivation of tiger prawns stands as a crucial sector in Indonesia's fisheries industry, significantly contributing to the country's foreign exchange. However, challenges persist in the cultivation process, particularly concerning suboptimal harvest outcomes. A critical factor in tiger prawn cultivation is the water temperature within shrimp ponds, a parameter directly influencing shrimp growth. The recommended normal temperature range is 28-31°C. Deviations from this range can adversely impact the shrimp's metabolic system and appetite, resulting in stress and potential mortality. Temperature fluctuations can lead to severe issues such as hindered growth, reduced productivity, and increased shrimp mortality. Real-time monitoring of air temperature emerges as a pivotal element in ensuring the success of shrimp farming. This research aims to provide a practical solution for shrimp cultivation by presenting a system that enables farmers to adjust air temperature in ponds in real-time through a user-friendly website application. The ability to promptly respond to abnormal temperature fluctuations empowers farmers to optimize cultivation conditions, thereby reducing shrimp mortality rates. The research focuses on creating a water temperature monitoring system for tiger prawn ponds using cloud storage through the Firebase platform. By implementing real-time temperature monitoring, financial risks for shrimp farmers can be mitigated, preventing losses attributed to temperature-induced shrimp mortality. The research utilizes the DS18B20 temperature sensor and WeMos D1 R2 as the control center. The website displays air temperature measurements, showcasing a high accuracy of 99% with a minimal error of 1.2%. This underscores the system's effectiveness in measuring air temperature both above and below the pond. The incorporation of IoT technology for monitoring water quality in ponds offers a practical and innovative approach to tiger prawn cultivation, with the potential to enhance production outcomes in each harvest.","PeriodicalId":443428,"journal":{"name":"Journal of Robotics and Control (JRC)","volume":"12 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140514122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Current Trends in Incubator Control for Premature Infants with Artificial Intelligence Based on Fuzzy Logic Control: Systematic Literature Review","authors":"Nia Maharani Raharja, Iswanto Suwarno, Sugiyarta Sugiyarta","doi":"10.18196/jrc.v3i6.13341","DOIUrl":"https://doi.org/10.18196/jrc.v3i6.13341","url":null,"abstract":"Incubator Control for Premature Babies has benefited greatly from the development of creative methods and uses of artificial intelligence. Due to the immaturity of the epidermis, premature infants lose fluid and heat early in life, which causes hyperosmolar dehydration and hypothermia. Water loss through the epidermis. Therefore, in order to maintain the baby's healthy temperature, an incubator is required. As a result, it is anticipated that the baby will maintain the same temperature as in the mother's womb. A temperature regulation system with good measurement and regulation quality is necessary due to the necessity of Incubator Control for Premature Infants with Artificial Intelligence Based on Fuzzy Logic in treating premature infants. The purpose of this research is to assess current trends in artificial intelligence-based fuzzy logic incubator control for preterm infants. The Preferred Reporting Items for Systematic Review (PRISMA) were used in this study's systematic literature review. 188 suitable articles that fit the inclusion requirements were found after the articles were screened and chosen. The outcomes demonstrated that the Incubator Control for Premature Infants offered the best environment for newborns with growth or disease-related issues (premature babies). An incubator is a sealed space free of dust and bacteria with the ability to regulate temperature, humidity, and oxygen to maintain a stable environment.","PeriodicalId":443428,"journal":{"name":"Journal of Robotics and Control (JRC)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115032511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
F. Umam, Muhammad Fuad, Iswanto Suwarno, A. Ma’arif, W. Caesarendra
{"title":"Obstacle Avoidance Based on Stereo Vision Navigation System for Omni-directional Robot","authors":"F. Umam, Muhammad Fuad, Iswanto Suwarno, A. Ma’arif, W. Caesarendra","doi":"10.18196/jrc.v4i2.17977","DOIUrl":"https://doi.org/10.18196/jrc.v4i2.17977","url":null,"abstract":"This paper addresses the problem of obstacle avoidance in mobile robot navigation systems. The navigation system is considered very important because the robot must be able to be controlled from its initial position to its destination without experiencing a collision. The robot must be able to avoid obstacles and arrive at its destination. Several previous studies have focused more on predetermined stationary obstacles. This has resulted in research results being difficult to apply in real environmental conditions, whereas in real conditions, obstacles can be stationary or moving caused by changes in the walking environment. The objective of this study is to address the robot’s navigation behaviors to avoid obstacles. In dealing with complex problems as previously described, a control system is designed using Neuro-Fuzzy so that the robot can avoid obstacles when the robot moves toward the destination. This paper uses ANFIS for obstacle avoidance control. The learning model used is offline learning. Mapping the input and output data is used in the initial step. Then the data is trained to produce a very small error. To support the movement of the robot so that it is more flexible and smoother in avoiding obstacles and can identify objects in real-time, a three wheels omnidirectional robot is used equipped with a stereo vision sensor. The contribution is to advance state of the art in obstacle avoidance for robot navigation systems by exploiting ANFIS with target-and-obstacles detection based on stereo vision sensors. This study tested the proposed control method by using 15 experiments with different obstacle setup positions. These scenarios were chosen to test the ability to avoid moving obstacles that may come from the front, the right, or the left of the robot. The robot moved to the left or right of the obstacles depending on the given Vy speed. After several tests with different obstacle positions, the robot managed to avoid the obstacle when the obstacle distance ranged from 173 – 150 cm with an average speed of Vy 274 mm/s. In the process of avoiding obstacles, the robot still calculates the direction in which the robot is facing the target until the target angle is 0.","PeriodicalId":443428,"journal":{"name":"Journal of Robotics and Control (JRC)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123501478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Adaptive P Control and Adaptive Fuzzy Logic Controller with Expert System Implementation for Robotic Manipulator Application","authors":"Phichitphon Chotikunnan, Yutthana Pititheeraphab","doi":"10.18196/jrc.v4i2.17757","DOIUrl":"https://doi.org/10.18196/jrc.v4i2.17757","url":null,"abstract":"This study aims to develop an expert system implementation of P controller and fuzzy logic controller to address issues related to improper control input estimation, which can arise from incorrect gain values or unsuitable rule-based designs. The research focuses on improving the control input adaptation by using an expert system to resolve the adjustment issues of the P controller and fuzzy logic controller. The methodology involves designing an expert system that captures error signals within the system and adjusts the gain to enhance the control input estimation from the main controller. In this study, the P controller and fuzzy logic controller were regulated, and the system was tested using step input signals with small values and larger than the saturation limit defined in the design. The PID controller used CHR tuning to least overshoot, determining the system's gain. The tests were conducted using different step input values and saturation limits, providing a comprehensive analysis of the controller's performance. The results demonstrated that the adaptive fuzzy logic controller performed well in terms of %OS and settling time values in system control, followed by the fuzzy logic controller, adaptive P controller, and P controller. The adaptive P controller showed similar control capabilities during input saturation, as long as it did not exceed 100% of the designed rule base. The study emphasizes the importance of incorporating expert systems into control input estimation in the main controller to enhance the system efficiency compared to the original system, and further improvements can be achieved if the main processing system already possesses adequate control ability. This research contributes to the development of more intelligent control systems by integrating expert systems with P controllers and fuzzy logic controllers, addressing the limitations of traditional control systems and improving their overall performance.","PeriodicalId":443428,"journal":{"name":"Journal of Robotics and Control (JRC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114813814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jeremy Nathanael Juwono, Nicolas Don Bosco Julienne, Anthonie Samuel Yogatama, M. H. Widianto
{"title":"Motorized Vehicle Diagnosis Design Using the Internet of Things Concept with the Help of Tsukamoto's Fuzzy Logic Algorithm","authors":"Jeremy Nathanael Juwono, Nicolas Don Bosco Julienne, Anthonie Samuel Yogatama, M. H. Widianto","doi":"10.18196/jrc.v4i2.17256","DOIUrl":"https://doi.org/10.18196/jrc.v4i2.17256","url":null,"abstract":"There are many popular branches, including the Internet of Things (IoT) and Artificial Intelligence (AI), which have solved many problems. Same as that, the automotive field is also growing with the technology of OBD-II. Unfortunately, not many people are familiar with OBD-II even though the features offered are very varied to prevent vehicle damage. This proposed work uses an IoT and AI system to make a vehicle diagnosis system with a help of OBD-II technology. By using ESP32 to collect data in each vehicle and using one Mini-PC to run the diagnosis with Fuzzy Logic Tsukamoto for three or more vehicles, this work can decrease the research cost. This work also uses the Fuzzy Logic Tsukamoto to diagnose vehicle health which is considered very suitable in real-time data situations. The method that we proposed is using Iterative Waterfall because of its simplicity and because there is a feedback path in every step. Iterative Waterfall is divided into 4 stages, Requirement Gathering and Analysis, System Design, implementation of Development, and Testing. Numerical validation is included by using MAPE for the testing in the IoT system and AI system. According to the MAPE result for the IoT system, the engine off voltage is 0.9510789847% and the engine start voltage is 3.136217503% which is considered a very good result. The MAPE result for the AI system is quite high, which is 20.74364412%, and because of that, the AI system needed more research for better performance. Overall, the system that has been proposed is already successful in monitoring vehicle health based on the parameters that have been determined.","PeriodicalId":443428,"journal":{"name":"Journal of Robotics and Control (JRC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132912024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Validation of Quad Tail-sitter VTOL UAV Model in Fixed Wing Mode","authors":"T. K. Priyambodo, Abdul Majid, Zaied Shouran","doi":"10.18196/jrc.v4i2.17253","DOIUrl":"https://doi.org/10.18196/jrc.v4i2.17253","url":null,"abstract":"Vertical take-off and landing (VTOL) is a type of unmanned aerial vehicle (UAV) that is growing rapidly because its ability to take off and land anywhere in tight spaces. One type of VTOL UAV, the tail-sitter, has the best efficiency. However, besides the efficiency offered, some challenges must still be overcome, including the complexity of combining the ability to hover like a helicopter and fly horizontally like a fixed-wing aircraft. This research has two contributions: in the form of how the analytical model is generated and the tools used (specifically for the small VTOL quad tail-sitter UAV) and how to utilize off-the-shelf components for UAV empirical modeling. This research focuses on increasing the speed and accuracy of the UAV VTOL control design in fixed-wing mode. The first step is to carry out analysis and simulation. The model is analytically obtained using OpenVSP in longitudinal and lateral modes. The next step is to realize this analytical model for both the aircraft and the controls. The third step is to measure the flight characteristics of the aircraft. Based on the data recorded during flights, an empirical model is made using system identification technique. The final step is to vali-date the analytical model with the empirical model. The results show that the characteristics of the analytical mode fulfill the specified requirements and are close to the empirical model. Thus, it can be concluded that the analytical model can be implemented directly, and consequently, the VTOL UAV design and development process has been shortened.","PeriodicalId":443428,"journal":{"name":"Journal of Robotics and Control (JRC)","volume":"2009 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131526436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H. A. Mintsa, G. E. Eny, Nzamba Senouveau, J. Kenné, Rolland-Michel Assoumou Nzue
{"title":"An Alternative Nonlinear Lyapunov Redesign Velocity Controller for an Electrohydraulic Drive","authors":"H. A. Mintsa, G. E. Eny, Nzamba Senouveau, J. Kenné, Rolland-Michel Assoumou Nzue","doi":"10.18196/jrc.v4i2.17340","DOIUrl":"https://doi.org/10.18196/jrc.v4i2.17340","url":null,"abstract":"This research aims at developing control law strategies that improve the performances and the robustness of electrohydraulic servosystems (EHSS) operation while considering easy implementation. To address the strongly nonlinear nature of the EHSS, a number of control algorithms based on backstepping approach is intensively used in the literature. The main contribution of this paper is to consider an alternative approach to synthetize a Lyapunov redesign nonlinear EHSS velocity controller. The proposed control law design is based on an appropriate choice of the control lyapunov function (clf), the extension of the Sontag formula and the construction of a nonlinear observer. The clf includes all the three system variable states in a positive define function. The Sontag formula is used in the time derivative of our clf in order to ensure an asymptotic stabilizing controller for regulating and tracking objectives. A nonlinear observer is developed in order to bring to the proposed controller the estimated values of the first and the second time output derivatives. The design, the tuning implementation and the performances of the proposed controller are compared to those of its equivalent backstepping controller. It is shown that the proposed controller is easier to design with simple implementation tuning while the backstepping controller has several complex design steps and implementation tuning issue. Moreover, the best performances especially under disturbance in the viscous damping are achieved with the proposed controller.","PeriodicalId":443428,"journal":{"name":"Journal of Robotics and Control (JRC)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123787469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Path Following and Avoiding Obstacle for Mobile Robot Under Dynamic Environments Using Reinforcement Learning","authors":"L. Hanh, V. Cong","doi":"10.18196/jrc.v4i2.17368","DOIUrl":"https://doi.org/10.18196/jrc.v4i2.17368","url":null,"abstract":"Obstacle avoidance for mobile robot to reach the desired target from a start location is one of the most interesting research topics. However, until now, few works discuss about working of mobile robot in the dynamic and continuously changing environment. So, this issue is still the research challenge for mobile robots. Traditional algorithm for obstacle avoidance in the dynamic, complex environment had many drawbacks. As known that Q-learning, the type of reinforcement learning, has been successfully applied in computer games. However, it is still rarely used in real world applications. This research presents an effectively method for real time dynamic obstacle avoidance based on Q-learning in the real world by using three-wheeled mobile robot. The position of obstacles including many static and dynamic obstacles and the mobile robot are recognized by fixed camera installed above the working space. The input for the robot is the 2D data from the camera. The output is an action for the robot (velocities, linear and angular parameters). Firstly, the simulation is performed for Q-learning algorithm then based on trained data, The Q-table value is implemented to the real mobile robot to perform the task in the real scene. The results are compared with intelligent control method for both static and dynamic obstacles cases. Through implement experiments, the results show that, after training in dynamic environments and testing in a new environment, the mobile robot is able to reach the target position successfully and have better performance comparing with fuzzy controller.","PeriodicalId":443428,"journal":{"name":"Journal of Robotics and Control (JRC)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133137760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jane Phoebe Achieng Ogenga, Paul Waweru Njeri, Joseph K. Muguro
{"title":"Development of a Virtual Environment-Based Electrooculogram Control System for Safe Electric Wheelchair Mobility for Individuals with Severe Physical Disabilities","authors":"Jane Phoebe Achieng Ogenga, Paul Waweru Njeri, Joseph K. Muguro","doi":"10.18196/jrc.v4i2.17165","DOIUrl":"https://doi.org/10.18196/jrc.v4i2.17165","url":null,"abstract":"Conventional wheelchairs are predominantly manual or joystick-operated electric wheelchairs. However, operating these wheelchairs can be difficult or impossible for individuals with severe physical disabilities. Due to losing control of their physical limbs, they depend on an attendant for assistance. As a remedy, bio-signals may be used as a control mechanism since they are readily available and can be acquired from any body part. This research proposes to use EOG signals to vail a control mechanism and test it in a virtual and actual electric wheelchair. The main contribution of the study is an investigation of the use of EOG to control an electric wheelchair in a virtual environment to determine safe control parameters for wheelchair use in complex environments. A customized data acquisition circuit was developed to acquire single-channel EOG signals using wet electrodes. The acquired signal was filtered and processed using feature extraction and classification techniques in MATLAB software. Two customized control environments were developed in Unity 3D, one with equally partitioned sections and the other with sections decreasing in size as the robot wheelchair approaches the target. Twenty-two test subjects (mean age 24.5, std 1.5) participated in the study, controlling the robot wheelchair in real-time with non or least instances of collision and oversteering. The system achieved an accuracy of 96.5% with a response time of 0.7s, translating to an ITR of 70.6 bits/min. Overall, the participants managed to navigate the virtual environment with a completion time of 101.94s ± 19.71 and 109.07s ± 13.25 for the male and female participants, respectively. In the scene with decreasing section sizes, 72% and 54% instances of collision and oversteering were reported, respectively, highlighting the need to consider the complexity of the control environment and the sufficiency of the participants' control skills to ensure safety in operations. The results confirm the usefulness of EOG as a control interface, with little or no need for recalibration. It provides a promising avenue for individuals with severe physical disabilities to operate wheelchairs independently in complex environments, enhancing their quality of life.","PeriodicalId":443428,"journal":{"name":"Journal of Robotics and Control (JRC)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123085211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}