Dimas Ahmad Nur Kholis Suhermanto, Widi Aribowo, Hisham A. Shehadeh, R. Rahmadian, M. Widyartono, A. Wardani, Aditya Chandra Hermawan
{"title":"基于 LoRa 和物联网监控直流电机","authors":"Dimas Ahmad Nur Kholis Suhermanto, Widi Aribowo, Hisham A. Shehadeh, R. Rahmadian, M. Widyartono, A. Wardani, Aditya Chandra Hermawan","doi":"10.18196/jrc.v5i1.19642","DOIUrl":null,"url":null,"abstract":"Electrical energy efficiency is a dynamic in itself that continues to be driven by electrical energy providers. In this work, long-range (LoRa) technology is used to monitor DC motors. In the modern world, IoT is becoming increasingly prevalent. Embedded systems are now widely used in daily life. More can be done remotely in terms of control and monitoring. LoRa is a new technology discovered and developing rapidly. LoRa technology addresses the need for battery-operated embedded devices. LoRa technology is a long-range, low-power technology. In this investigation, a LoRa transmitter and a LoRa receiver were employed. This study employed a range of cases to test the LoRa device. In the first instance, there are no barriers, whereas there are in the second instance. The results of the two trials showed that the LoRa transmitter and receiver had successful communication. In this study, the room temperature is used to control DC motors. So that the DC motor's speed adjusts to fluctuations in the room's temperature. Additionally, measuring tools and the sensors utilised in this investigation were contrasted. The encoder sensor and the INA 219 sensor were the two measured sensors employed in this study. According to the findings of the experiment, the tool was functioning properly.","PeriodicalId":443428,"journal":{"name":"Journal of Robotics and Control (JRC)","volume":"129 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monitoring DC Motor Based On LoRa and IOT\",\"authors\":\"Dimas Ahmad Nur Kholis Suhermanto, Widi Aribowo, Hisham A. Shehadeh, R. Rahmadian, M. Widyartono, A. Wardani, Aditya Chandra Hermawan\",\"doi\":\"10.18196/jrc.v5i1.19642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrical energy efficiency is a dynamic in itself that continues to be driven by electrical energy providers. In this work, long-range (LoRa) technology is used to monitor DC motors. In the modern world, IoT is becoming increasingly prevalent. Embedded systems are now widely used in daily life. More can be done remotely in terms of control and monitoring. LoRa is a new technology discovered and developing rapidly. LoRa technology addresses the need for battery-operated embedded devices. LoRa technology is a long-range, low-power technology. In this investigation, a LoRa transmitter and a LoRa receiver were employed. This study employed a range of cases to test the LoRa device. In the first instance, there are no barriers, whereas there are in the second instance. The results of the two trials showed that the LoRa transmitter and receiver had successful communication. In this study, the room temperature is used to control DC motors. So that the DC motor's speed adjusts to fluctuations in the room's temperature. Additionally, measuring tools and the sensors utilised in this investigation were contrasted. The encoder sensor and the INA 219 sensor were the two measured sensors employed in this study. According to the findings of the experiment, the tool was functioning properly.\",\"PeriodicalId\":443428,\"journal\":{\"name\":\"Journal of Robotics and Control (JRC)\",\"volume\":\"129 9\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Robotics and Control (JRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18196/jrc.v5i1.19642\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Robotics and Control (JRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18196/jrc.v5i1.19642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electrical energy efficiency is a dynamic in itself that continues to be driven by electrical energy providers. In this work, long-range (LoRa) technology is used to monitor DC motors. In the modern world, IoT is becoming increasingly prevalent. Embedded systems are now widely used in daily life. More can be done remotely in terms of control and monitoring. LoRa is a new technology discovered and developing rapidly. LoRa technology addresses the need for battery-operated embedded devices. LoRa technology is a long-range, low-power technology. In this investigation, a LoRa transmitter and a LoRa receiver were employed. This study employed a range of cases to test the LoRa device. In the first instance, there are no barriers, whereas there are in the second instance. The results of the two trials showed that the LoRa transmitter and receiver had successful communication. In this study, the room temperature is used to control DC motors. So that the DC motor's speed adjusts to fluctuations in the room's temperature. Additionally, measuring tools and the sensors utilised in this investigation were contrasted. The encoder sensor and the INA 219 sensor were the two measured sensors employed in this study. According to the findings of the experiment, the tool was functioning properly.