F. Umam, Muhammad Fuad, Iswanto Suwarno, A. Ma’arif, W. Caesarendra
{"title":"基于立体视觉导航系统的全向机器人避障","authors":"F. Umam, Muhammad Fuad, Iswanto Suwarno, A. Ma’arif, W. Caesarendra","doi":"10.18196/jrc.v4i2.17977","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of obstacle avoidance in mobile robot navigation systems. The navigation system is considered very important because the robot must be able to be controlled from its initial position to its destination without experiencing a collision. The robot must be able to avoid obstacles and arrive at its destination. Several previous studies have focused more on predetermined stationary obstacles. This has resulted in research results being difficult to apply in real environmental conditions, whereas in real conditions, obstacles can be stationary or moving caused by changes in the walking environment. The objective of this study is to address the robot’s navigation behaviors to avoid obstacles. In dealing with complex problems as previously described, a control system is designed using Neuro-Fuzzy so that the robot can avoid obstacles when the robot moves toward the destination. This paper uses ANFIS for obstacle avoidance control. The learning model used is offline learning. Mapping the input and output data is used in the initial step. Then the data is trained to produce a very small error. To support the movement of the robot so that it is more flexible and smoother in avoiding obstacles and can identify objects in real-time, a three wheels omnidirectional robot is used equipped with a stereo vision sensor. The contribution is to advance state of the art in obstacle avoidance for robot navigation systems by exploiting ANFIS with target-and-obstacles detection based on stereo vision sensors. This study tested the proposed control method by using 15 experiments with different obstacle setup positions. These scenarios were chosen to test the ability to avoid moving obstacles that may come from the front, the right, or the left of the robot. The robot moved to the left or right of the obstacles depending on the given Vy speed. After several tests with different obstacle positions, the robot managed to avoid the obstacle when the obstacle distance ranged from 173 – 150 cm with an average speed of Vy 274 mm/s. In the process of avoiding obstacles, the robot still calculates the direction in which the robot is facing the target until the target angle is 0.","PeriodicalId":443428,"journal":{"name":"Journal of Robotics and Control (JRC)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Obstacle Avoidance Based on Stereo Vision Navigation System for Omni-directional Robot\",\"authors\":\"F. Umam, Muhammad Fuad, Iswanto Suwarno, A. Ma’arif, W. Caesarendra\",\"doi\":\"10.18196/jrc.v4i2.17977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the problem of obstacle avoidance in mobile robot navigation systems. The navigation system is considered very important because the robot must be able to be controlled from its initial position to its destination without experiencing a collision. The robot must be able to avoid obstacles and arrive at its destination. Several previous studies have focused more on predetermined stationary obstacles. This has resulted in research results being difficult to apply in real environmental conditions, whereas in real conditions, obstacles can be stationary or moving caused by changes in the walking environment. The objective of this study is to address the robot’s navigation behaviors to avoid obstacles. In dealing with complex problems as previously described, a control system is designed using Neuro-Fuzzy so that the robot can avoid obstacles when the robot moves toward the destination. This paper uses ANFIS for obstacle avoidance control. The learning model used is offline learning. Mapping the input and output data is used in the initial step. Then the data is trained to produce a very small error. To support the movement of the robot so that it is more flexible and smoother in avoiding obstacles and can identify objects in real-time, a three wheels omnidirectional robot is used equipped with a stereo vision sensor. The contribution is to advance state of the art in obstacle avoidance for robot navigation systems by exploiting ANFIS with target-and-obstacles detection based on stereo vision sensors. This study tested the proposed control method by using 15 experiments with different obstacle setup positions. These scenarios were chosen to test the ability to avoid moving obstacles that may come from the front, the right, or the left of the robot. The robot moved to the left or right of the obstacles depending on the given Vy speed. After several tests with different obstacle positions, the robot managed to avoid the obstacle when the obstacle distance ranged from 173 – 150 cm with an average speed of Vy 274 mm/s. In the process of avoiding obstacles, the robot still calculates the direction in which the robot is facing the target until the target angle is 0.\",\"PeriodicalId\":443428,\"journal\":{\"name\":\"Journal of Robotics and Control (JRC)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Robotics and Control (JRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18196/jrc.v4i2.17977\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Robotics and Control (JRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18196/jrc.v4i2.17977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Obstacle Avoidance Based on Stereo Vision Navigation System for Omni-directional Robot
This paper addresses the problem of obstacle avoidance in mobile robot navigation systems. The navigation system is considered very important because the robot must be able to be controlled from its initial position to its destination without experiencing a collision. The robot must be able to avoid obstacles and arrive at its destination. Several previous studies have focused more on predetermined stationary obstacles. This has resulted in research results being difficult to apply in real environmental conditions, whereas in real conditions, obstacles can be stationary or moving caused by changes in the walking environment. The objective of this study is to address the robot’s navigation behaviors to avoid obstacles. In dealing with complex problems as previously described, a control system is designed using Neuro-Fuzzy so that the robot can avoid obstacles when the robot moves toward the destination. This paper uses ANFIS for obstacle avoidance control. The learning model used is offline learning. Mapping the input and output data is used in the initial step. Then the data is trained to produce a very small error. To support the movement of the robot so that it is more flexible and smoother in avoiding obstacles and can identify objects in real-time, a three wheels omnidirectional robot is used equipped with a stereo vision sensor. The contribution is to advance state of the art in obstacle avoidance for robot navigation systems by exploiting ANFIS with target-and-obstacles detection based on stereo vision sensors. This study tested the proposed control method by using 15 experiments with different obstacle setup positions. These scenarios were chosen to test the ability to avoid moving obstacles that may come from the front, the right, or the left of the robot. The robot moved to the left or right of the obstacles depending on the given Vy speed. After several tests with different obstacle positions, the robot managed to avoid the obstacle when the obstacle distance ranged from 173 – 150 cm with an average speed of Vy 274 mm/s. In the process of avoiding obstacles, the robot still calculates the direction in which the robot is facing the target until the target angle is 0.