{"title":"On certain semigroups of contraction mappings of a finite chain","authors":"A. Umar, M. M. Zubairu","doi":"10.12958/adm1816","DOIUrl":"https://doi.org/10.12958/adm1816","url":null,"abstract":"Let[n] ={1,2, . . . , n} be a finite chain and let Pn (resp.,Tn) be the semigroup of partial transformations on[n] (resp., full transformations on[n]). Let CPn={α∈ Pn: (for allx, y ∈ Dom α)|xα−yα|⩽|x−y|}(resp., CTn={α∈ Tn: (for allx, y∈[n])|xα−yα|⩽|x−y|}) be the subsemigroup of partial contractionmappings on[n](resp., subsemigroup of full contraction mappingson[n]). We characterize all the starred Green’s relations on C Pn and it subsemigroup of order preserving and/or order reversingand subsemigroup of order preserving partial contractions on[n], respectively. We show that the semigroups CPn and CTn, and some of their subsemigroups are left abundant semigroups for all n but not right abundant forn⩾4. We further show that the set ofregular elements of the semigroup CTn and its subsemigroup of order preserving or order reversing full contractions on[n], each formsa regular subsemigroup and an orthodox semigroup, respectively.","PeriodicalId":44176,"journal":{"name":"Algebra & Discrete Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66420014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the nilpotence of the prime radical in module categories","authors":"C. Arellano, J. Castro, J. Ríos","doi":"10.12958/adm1634","DOIUrl":"https://doi.org/10.12958/adm1634","url":null,"abstract":"For M∈R-Mod and τ a hereditary torsion theory on the category σ[M] we use the concept of prime and semiprime module defined by Raggi et al. to introduce the concept of τ-pure prime radical Nτ(M)=Nτ as the intersection of all τ-pure prime submodules of M. We give necessary and sufficient conditions for the τ-nilpotence of Nτ(M). We prove that if M is a finitely generated R-module, progenerator in σ[M] and χ≠τ is FIS-invariant torsion theory such that M has τ-Krull dimension, then Nτ is τ-nilpotent.","PeriodicalId":44176,"journal":{"name":"Algebra & Discrete Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66418891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the structure of the algebra of derivations of cyclic Leibniz algebras","authors":"L. A. Kurdachenko, M. Semko, V. Yashchuk","doi":"10.12958/adm1898","DOIUrl":"https://doi.org/10.12958/adm1898","url":null,"abstract":"We describe the algebra of derivation of finite-dimensional cyclic Leibniz algebra.","PeriodicalId":44176,"journal":{"name":"Algebra & Discrete Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66420121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"S-second submodules of a module","authors":"Faranak Farshadifar","doi":"10.12958/adm1437","DOIUrl":"https://doi.org/10.12958/adm1437","url":null,"abstract":"Let R be a commutative ring with identity and let M be an R-module. The main purpose of this paper is to introduce and study the notion of S-second submodules of an R-module M as a~generalization of second submodules of M.","PeriodicalId":44176,"journal":{"name":"Algebra & Discrete Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66418003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Diagonal torsion matrices associated with modular data","authors":"G. Singh","doi":"10.12958/adm1368","DOIUrl":"https://doi.org/10.12958/adm1368","url":null,"abstract":"Modular data are commonly studied in mathematics and physics. A modular datum defines a finite-dimensional representation of the modular group SL2(Z). Cuntz (2007) defined isomorphic integral modular data. Here we discuss isomorphic integral and non-integral modular data as well as non-isomorphic but closely related modular data. In this paper, we give some insights into diagonal torsion matrices associated to modular data.","PeriodicalId":44176,"journal":{"name":"Algebra & Discrete Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66417504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On classifying the non-Tits P-critical posets","authors":"V. M. Bondarenko, M. Styopochkina","doi":"10.12958/adm1912","DOIUrl":"https://doi.org/10.12958/adm1912","url":null,"abstract":"In 2005, the authors described all introduced by them P-critical posets (minimal finite posets with the quadratic Tits form not being positive); up to isomorphism, their number is 132 (75 if duality is considered). Later (in 2014) A. Polak and D. Simson offered an alternative way of proving by using computer algebra tools. In doing this, they defined and described the Tits P-critical posets as a special case of the P-critical posets. In this paper we classify all the non-Tits P-critical posets without complex calculations and without using the list of all P-critical ones.","PeriodicalId":44176,"journal":{"name":"Algebra & Discrete Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66420178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Homotopy equivalence of normalized and unnormalized complexes, revisited","authors":"V. Lyubashenko, A. Matsui","doi":"10.12958/adm1879","DOIUrl":"https://doi.org/10.12958/adm1879","url":null,"abstract":"We consider the unnormalized and normalized complexes of a simplicial or a cosimplicial object coming from the Dold-Kan correspondence for an idempotent complete additive category (kernels and cokernels are not required). The normalized complex is defined as the image of certain idempotent in the unnormalized complex. We prove that this idempotent is homotopic to identity via homotopy which is expressed via faces and degeneracies. Hence, the normalized and unnormalized complex are homotopy isomorphic to each other. We provide explicit formulae for the homotopy.","PeriodicalId":44176,"journal":{"name":"Algebra & Discrete Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66420480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. G. Rodríguez-Nieto, O. Salazar-Díaz, R. Velásquez
{"title":"The structure of g-digroup actions and representation theory","authors":"J. G. Rodríguez-Nieto, O. Salazar-Díaz, R. Velásquez","doi":"10.12958/adm1741","DOIUrl":"https://doi.org/10.12958/adm1741","url":null,"abstract":"The aim of this paper is to propose two possible ways of defining a g-digroup action and a first approximation to representation theory of g-digroups.","PeriodicalId":44176,"journal":{"name":"Algebra & Discrete Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66419200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mappings preserving sum of products a∘b+ba∗ on factor von Neumann algebras","authors":"J. M. Ferreira, M. Marietto","doi":"10.12958/ADM1482","DOIUrl":"https://doi.org/10.12958/ADM1482","url":null,"abstract":"Let A and B be two factor von Neumann algebras. In this paper, we proved that a bijective mapping Φ:A→B satisfies Φ(a∘b+ba∗)=Φ(a)∘Φ(b)+Φ(b)Φ(a)∗ (where ∘ is the special Jordan product on A and B, respectively), for all elements a,b∈A, if and only if Φ is a ∗-ring isomorphism. In particular, if the von Neumann algebras A and B are type I factors, then Φ is a unitary isomorphism or a conjugate unitary isomorphism.","PeriodicalId":44176,"journal":{"name":"Algebra & Discrete Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66417839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cancellation ideals of a ring extension","authors":"S. Tchamna","doi":"10.12958/adm1424","DOIUrl":"https://doi.org/10.12958/adm1424","url":null,"abstract":"We study properties of cancellation ideals of ring extensions. Let R⊆S be a ring extension. A nonzero S-regular ideal I of R is called a (quasi)-cancellation ideal of the ring extension R⊆S if whenever IB=IC for two S-regular (finitely generated) R-submodules B and C of S, then B=C. We show that a finitely generated ideal I is a cancellation ideal of the ring extension R⊆S if and only if I is S-invertible.","PeriodicalId":44176,"journal":{"name":"Algebra & Discrete Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66417120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}