Homotopy equivalence of normalized and unnormalized complexes, revisited

IF 0.3 Q4 MATHEMATICS, APPLIED
V. Lyubashenko, A. Matsui
{"title":"Homotopy equivalence of normalized and unnormalized complexes, revisited","authors":"V. Lyubashenko, A. Matsui","doi":"10.12958/adm1879","DOIUrl":null,"url":null,"abstract":"We consider the unnormalized and normalized complexes of a simplicial or a cosimplicial object coming from the Dold-Kan correspondence for an idempotent complete additive category (kernels and cokernels are not required). The normalized complex is defined as the image of certain idempotent in the unnormalized complex. We prove that this idempotent is homotopic to identity via homotopy which is expressed via faces and degeneracies. Hence, the normalized and unnormalized complex are homotopy isomorphic to each other. We provide explicit formulae for the homotopy.","PeriodicalId":44176,"journal":{"name":"Algebra & Discrete Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12958/adm1879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the unnormalized and normalized complexes of a simplicial or a cosimplicial object coming from the Dold-Kan correspondence for an idempotent complete additive category (kernels and cokernels are not required). The normalized complex is defined as the image of certain idempotent in the unnormalized complex. We prove that this idempotent is homotopic to identity via homotopy which is expressed via faces and degeneracies. Hence, the normalized and unnormalized complex are homotopy isomorphic to each other. We provide explicit formulae for the homotopy.
正则化与非正则化配合物的同伦等价
我们考虑了一个幂等完备加性范畴(不需要核和复核)的由Dold-Kan对应而来的单纯或协单纯对象的非归一化和归一化复形。归一化复形定义为非归一化复形中某个幂等的象。我们通过同伦证明了这个幂等与恒等是同伦的,而同伦是用面和简并表示的。因此,归一化复合体与非归一化复合体是同伦同构的。我们给出了同伦的显式公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algebra & Discrete Mathematics
Algebra & Discrete Mathematics MATHEMATICS, APPLIED-
CiteScore
0.50
自引率
0.00%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信