{"title":"关于非tits p临界序集的分类","authors":"V. M. Bondarenko, M. Styopochkina","doi":"10.12958/adm1912","DOIUrl":null,"url":null,"abstract":"In 2005, the authors described all introduced by them P-critical posets (minimal finite posets with the quadratic Tits form not being positive); up to isomorphism, their number is 132 (75 if duality is considered). Later (in 2014) A. Polak and D. Simson offered an alternative way of proving by using computer algebra tools. In doing this, they defined and described the Tits P-critical posets as a special case of the P-critical posets. In this paper we classify all the non-Tits P-critical posets without complex calculations and without using the list of all P-critical ones.","PeriodicalId":44176,"journal":{"name":"Algebra & Discrete Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On classifying the non-Tits P-critical posets\",\"authors\":\"V. M. Bondarenko, M. Styopochkina\",\"doi\":\"10.12958/adm1912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 2005, the authors described all introduced by them P-critical posets (minimal finite posets with the quadratic Tits form not being positive); up to isomorphism, their number is 132 (75 if duality is considered). Later (in 2014) A. Polak and D. Simson offered an alternative way of proving by using computer algebra tools. In doing this, they defined and described the Tits P-critical posets as a special case of the P-critical posets. In this paper we classify all the non-Tits P-critical posets without complex calculations and without using the list of all P-critical ones.\",\"PeriodicalId\":44176,\"journal\":{\"name\":\"Algebra & Discrete Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12958/adm1912\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12958/adm1912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2
摘要
2005年,作者描述了所有由他们引入的p临界偏序集(二次Tits形式不为正的极小有限偏序集);直到同构,它们的数量是132(如果考虑对偶性,则为75)。后来(2014年)A. Polak和D. Simson通过使用计算机代数工具提供了另一种证明方法。在此过程中,他们定义并描述了Tits p -临界偏序集作为p -临界偏序集的一种特殊情况。在本文中,我们对所有的非tits p临界序集进行了分类,没有进行复杂的计算,也没有使用所有p临界序集的列表。
In 2005, the authors described all introduced by them P-critical posets (minimal finite posets with the quadratic Tits form not being positive); up to isomorphism, their number is 132 (75 if duality is considered). Later (in 2014) A. Polak and D. Simson offered an alternative way of proving by using computer algebra tools. In doing this, they defined and described the Tits P-critical posets as a special case of the P-critical posets. In this paper we classify all the non-Tits P-critical posets without complex calculations and without using the list of all P-critical ones.