关于非tits p临界序集的分类

IF 0.3 Q4 MATHEMATICS, APPLIED
V. M. Bondarenko, M. Styopochkina
{"title":"关于非tits p临界序集的分类","authors":"V. M. Bondarenko, M. Styopochkina","doi":"10.12958/adm1912","DOIUrl":null,"url":null,"abstract":"In 2005, the authors described all introduced by them P-critical posets (minimal finite posets with the quadratic Tits form not being positive); up to isomorphism, their number is 132 (75 if duality is considered). Later (in 2014) A. Polak and D. Simson offered an alternative way of proving by using computer algebra tools. In doing this, they defined and described the Tits P-critical posets as a special case of the P-critical posets. In this paper we classify all the non-Tits P-critical posets without complex calculations and without using the list of all P-critical ones.","PeriodicalId":44176,"journal":{"name":"Algebra & Discrete Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On classifying the non-Tits P-critical posets\",\"authors\":\"V. M. Bondarenko, M. Styopochkina\",\"doi\":\"10.12958/adm1912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 2005, the authors described all introduced by them P-critical posets (minimal finite posets with the quadratic Tits form not being positive); up to isomorphism, their number is 132 (75 if duality is considered). Later (in 2014) A. Polak and D. Simson offered an alternative way of proving by using computer algebra tools. In doing this, they defined and described the Tits P-critical posets as a special case of the P-critical posets. In this paper we classify all the non-Tits P-critical posets without complex calculations and without using the list of all P-critical ones.\",\"PeriodicalId\":44176,\"journal\":{\"name\":\"Algebra & Discrete Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12958/adm1912\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12958/adm1912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

摘要

2005年,作者描述了所有由他们引入的p临界偏序集(二次Tits形式不为正的极小有限偏序集);直到同构,它们的数量是132(如果考虑对偶性,则为75)。后来(2014年)A. Polak和D. Simson通过使用计算机代数工具提供了另一种证明方法。在此过程中,他们定义并描述了Tits p -临界偏序集作为p -临界偏序集的一种特殊情况。在本文中,我们对所有的非tits p临界序集进行了分类,没有进行复杂的计算,也没有使用所有p临界序集的列表。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On classifying the non-Tits P-critical posets
In 2005, the authors described all introduced by them P-critical posets (minimal finite posets with the quadratic Tits form not being positive); up to isomorphism, their number is 132 (75 if duality is considered). Later (in 2014) A. Polak and D. Simson offered an alternative way of proving by using computer algebra tools. In doing this, they defined and described the Tits P-critical posets as a special case of the P-critical posets. In this paper we classify all the non-Tits P-critical posets without complex calculations and without using the list of all P-critical ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebra & Discrete Mathematics
Algebra & Discrete Mathematics MATHEMATICS, APPLIED-
CiteScore
0.50
自引率
0.00%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信