论模范畴中素根的幂零性

IF 0.3 Q4 MATHEMATICS, APPLIED
C. Arellano, J. Castro, J. Ríos
{"title":"论模范畴中素根的幂零性","authors":"C. Arellano, J. Castro, J. Ríos","doi":"10.12958/adm1634","DOIUrl":null,"url":null,"abstract":"For M∈R-Mod and τ a hereditary torsion theory on the category σ[M] we use the concept of prime and semiprime module defined by Raggi et al. to introduce the concept of τ-pure prime radical Nτ(M)=Nτ as the intersection of all τ-pure prime submodules of M. We give necessary and sufficient conditions for the τ-nilpotence of Nτ(M). We prove that if M is a finitely generated R-module, progenerator in σ[M] and χ≠τ is FIS-invariant torsion theory such that M has τ-Krull dimension, then Nτ is τ-nilpotent.","PeriodicalId":44176,"journal":{"name":"Algebra & Discrete Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the nilpotence of the prime radical in module categories\",\"authors\":\"C. Arellano, J. Castro, J. Ríos\",\"doi\":\"10.12958/adm1634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For M∈R-Mod and τ a hereditary torsion theory on the category σ[M] we use the concept of prime and semiprime module defined by Raggi et al. to introduce the concept of τ-pure prime radical Nτ(M)=Nτ as the intersection of all τ-pure prime submodules of M. We give necessary and sufficient conditions for the τ-nilpotence of Nτ(M). We prove that if M is a finitely generated R-module, progenerator in σ[M] and χ≠τ is FIS-invariant torsion theory such that M has τ-Krull dimension, then Nτ is τ-nilpotent.\",\"PeriodicalId\":44176,\"journal\":{\"name\":\"Algebra & Discrete Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12958/adm1634\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12958/adm1634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

对于M∈R-Mod和σ[M]上的一个遗传扭转理论,我们利用Raggi等人定义的素数和半素数模的概念引入了τ-纯素数根Nτ(M)=Nτ作为M的所有τ-纯素数子模的交的概念,并给出了Nτ(M)的τ-零幂的充分必要条件。我们证明了如果M是一个有限生成的r模,σ[M]且χ≠τ中的生成子是fis不变扭转理论,使得M具有τ- krull维数,则Nτ是τ-幂零的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the nilpotence of the prime radical in module categories
For M∈R-Mod and τ a hereditary torsion theory on the category σ[M] we use the concept of prime and semiprime module defined by Raggi et al. to introduce the concept of τ-pure prime radical Nτ(M)=Nτ as the intersection of all τ-pure prime submodules of M. We give necessary and sufficient conditions for the τ-nilpotence of Nτ(M). We prove that if M is a finitely generated R-module, progenerator in σ[M] and χ≠τ is FIS-invariant torsion theory such that M has τ-Krull dimension, then Nτ is τ-nilpotent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebra & Discrete Mathematics
Algebra & Discrete Mathematics MATHEMATICS, APPLIED-
CiteScore
0.50
自引率
0.00%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信