Adam Kurpisz, Samuli Leppänen, Monaldo Mastrolilli
{"title":"Tight Sum-of-Squares lower bounds for binary polynomial optimization problems","authors":"Adam Kurpisz, Samuli Leppänen, Monaldo Mastrolilli","doi":"10.1145/3626106","DOIUrl":"https://doi.org/10.1145/3626106","url":null,"abstract":"For binary polynomial optimization problems of degree 2 d with n variables Sakaue, Takeda, Kim and Ito [SIAM J. Optim., 2017] proved that the (lceil frac{n+2d-1}{2}rceil ) th semidefinite (SDP) relaxation in the SoS/Lasserre hierarchy of SDP relaxations provides the exact optimal value. When n is an odd number, we show that their analysis is tight, i.e. we prove that (frac{n+2d-1}{2} ) levels of the SoS/Lasserre hierarchy are also necessary. Laurent [Math. Oper. Res., 2003] showed that the Sherali-Adams hierarchy requires n levels to detect the empty integer hull of a linear representation of a set with no integral points. She conjectured that the SoS/Lasserre rank for the same problem is n − 1. In this paper we disprove this conjecture and derive lower and upper bounds for the rank.","PeriodicalId":44045,"journal":{"name":"ACM Transactions on Computation Theory","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135944277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimal Polynomial-time Compression for Boolean Max CSP","authors":"Bart M.P. Jansen, Michał Włodarczyk","doi":"10.1145/3624704","DOIUrl":"https://doi.org/10.1145/3624704","url":null,"abstract":"In the Boolean maximum constraint satisfaction problem – Max CSP ( Γ ) – one is given a collection of weighted applications of constraints from a finite constraint language Γ , over a common set of variables, and the goal is to assign Boolean values to the variables so that the total weight of satisfied constraints is maximized. There exists a concise dichotomy theorem providing a criterion on Γ for the problem to be polynomial-time solvable and stating that otherwise it becomes NP-hard. We study the NP-hard cases through the lens of kernelization and provide a complete characterization of Max CSP ( Γ ) with respect to the optimal compression size. Namely, we prove that Max CSP ( Γ ) parameterized by the number of variables n is either polynomial-time solvable, or there exists an integer d ≥ 2 depending on Γ , such that: (1) An instance of Max CSP ( Γ ) can be compressed into an equivalent instance with (mathcal {O}(n^dlog n) ) bits in polynomial time, (2) Max CSP( Γ ) does not admit such a compression to (mathcal {O}(n^{d-varepsilon }) ) bits unless NP⊆co-NP/poly. Our reductions are based on interpreting constraints as multilinear polynomials combined with the framework of ‘constraint implementations’, formerly used in the context of APX-hardness. As another application of our reductions, we reveal tight connections between optimal running times for solving Max CSP( Γ ) . More precisely, we show that obtaining a running time of the form (mathcal {O}(2^{(1-varepsilon)n}) ) for particular classes of Max CSP s is as hard as breaching this barrier for Max d - SAT for some d .","PeriodicalId":44045,"journal":{"name":"ACM Transactions on Computation Theory","volume":"118 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134903421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On <i>p</i> -Group Isomorphism: search-to-decision, counting-to-decision, and nilpotency class reductions via tensors","authors":"Joshua A. Grochow, Youming Qiao","doi":"10.1145/3625308","DOIUrl":"https://doi.org/10.1145/3625308","url":null,"abstract":"In this paper we study some classical complexity-theoretic questions regarding G roup I somorphism (G p I). We focus on p -groups (groups of prime power order) with odd p , which are believed to be a bottleneck case for G p I, and work in the model of matrix groups over finite fields. Our main results are as follows. • Although search-to-decision and counting-to-decision reductions have been known for over four decades for G raph I somorphism (GI), they had remained open for G p I, explicitly asked by Arvind & Torán (Bull. EATCS, 2005). Extending methods from T ensor I somorphism (Grochow & Qiao, ITCS 2021), we show moderately exponential-time such reductions within p -groups of class 2 and exponent p . • D espite the widely held belief that p -groups of class 2 and exponent p are the hardest cases of GpI, there was no reduction to these groups from any larger class of groups. Again using methods from Tensor Isomorphism (ibid.), we show the first such reduction, namely from isomorphism testing of p -groups of “small” class and exponent p to those of class two and exponent p . For the first results, our main innovation is to develop linear-algebraic analogues of classical graph coloring gadgets, a key technique in studying the structural complexity of GI . Unlike the graph coloring gadgets, which support restricting to various subgroups of the symmetric group, the problems we study require restricting to various subgroups of the general linear group, which entails significantly different and more complicated gadgets. The analysis of one of our gadgets relies on a classical result from group theory regarding random generation of classical groups (Kantor & Lubotzky, Geom. Dedicata, 1990). For the nilpotency class reduction, we combine a runtime analysis of the Lazard correspondence with T ensor I somorphism -completeness results (Grochow & Qiao, ibid.).","PeriodicalId":44045,"journal":{"name":"ACM Transactions on Computation Theory","volume":"93 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135925672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quantum communication complexity of linear regression","authors":"Ashley Montanaro, Changpeng Shao","doi":"10.1145/3625225","DOIUrl":"https://doi.org/10.1145/3625225","url":null,"abstract":"Quantum computers may achieve speedups over their classical counterparts for solving linear algebra problems. However, in some cases – such as for low-rank matrices – dequantised algorithms demonstrate that there cannot be an exponential quantum speedup. In this work, we show that quantum computers have provable polynomial and exponential speedups in terms of communication complexity for some fundamental linear algebra problems if there is no restriction on the rank. We mainly focus on solving linear regression and Hamiltonian simulation. In the quantum case, the task is to prepare the quantum state of the result. To allow for a fair comparison, in the classical case, the task is to sample from the result. We investigate these two problems in two-party and multiparty models, propose near-optimal quantum protocols and prove quantum/classical lower bounds. In this process, we propose an efficient quantum protocol for quantum singular value transformation, which is a powerful technique for designing quantum algorithms. We feel this will be helpful in developing efficient quantum protocols for many other problems.","PeriodicalId":44045,"journal":{"name":"ACM Transactions on Computation Theory","volume":"39 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136062302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hubie Chen, Bart M. P. Jansen, Karolina Okrasa, Astrid Pieterse, Paweł Rzążewski
{"title":"Sparsification Lower Bounds for List <i>H</i> -Coloring","authors":"Hubie Chen, Bart M. P. Jansen, Karolina Okrasa, Astrid Pieterse, Paweł Rzążewski","doi":"10.1145/3612938","DOIUrl":"https://doi.org/10.1145/3612938","url":null,"abstract":"We investigate the List H -Coloring problem, the generalization of graph coloring that asks whether an input graph G admits a homomorphism to the undirected graph H (possibly with loops), such that each vertex v ∈ V ( G ) is mapped to a vertex on its list L ( v )⊆ V ( H ). An important result by Feder, Hell, and Huang [JGT 2003] states that List H -Coloring is polynomial-time solvable if H is a so-called bi-arc graph , and NP-complete otherwise. We investigate the NP-complete cases of the problem from the perspective of polynomial-time sparsification: can an n -vertex instance be efficiently reduced to an equivalent instance of bitsize (mathcal {O}(n^{2-varepsilon }) ) for some ε > 0? We prove that if H is not a bi-arc graph, then List H -Coloring does not admit such a sparsification algorithm unless ({mathsf {NP subseteq coNP/poly}} ) . Our proofs combine techniques from kernelization lower bounds with a study of the structure of graphs H which are not bi- graphs.","PeriodicalId":44045,"journal":{"name":"ACM Transactions on Computation Theory","volume":"111 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135353860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Forgetfulness Can Make You Faster: An O*(8.097k)-Time Algorithm for Weighted 3-Set k-Packing","authors":"M. Zehavi","doi":"10.1145/3599722","DOIUrl":"https://doi.org/10.1145/3599722","url":null,"abstract":"In this paper, we study the classic Weighted 3-Set k-Packing problem: given a universe U, a family (mathcal {S} ) of subsets of size 3 of U, a weight function (w : {mathcal {S}} rightarrow mathbb {R} ) , (W in mathbb {R} ) and a parameter (k in mathbb {N} ) , the objective is to decide if there is a subfamily ({mathcal {S}}^{prime } subseteq {mathcal {S}} ) of k disjoint sets and total weight at least W. We present a deterministic parameterized algorithm for this problem that runs in time O*(8.097k), where O* hides factors polynomial in the input size. This substantially improves upon the previously best deterministic algorithm for Weighted 3-Set k-Packing, which runs in time O*(12.155k) [SIDMA 2015], and was also the best deterministic algorithm for the unweighted version of this problem. Our algorithm is based on a novel application of the method of representative sets that might be of independent interest.","PeriodicalId":44045,"journal":{"name":"ACM Transactions on Computation Theory","volume":"1 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45260280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Complexity Landscape of Fixed-Parameter Directed Steiner Network Problems","authors":"Andreas Emil Feldmann, Daniel Marx","doi":"10.1145/3580376","DOIUrl":"https://doi.org/10.1145/3580376","url":null,"abstract":"Given a directed graph G and a list ( s 1 , t 1 ), …, ( s d , t d ) of terminal pairs, the Directed Steiner Network problem asks for a minimum-cost subgraph of G that contains a directed s i → t i path for every 1 ≤ i ≤ d . The special case Directed Steiner Tree (when we ask for paths from a root r to terminals t 1 , …, t d ) is known to be fixed-parameter tractable parameterized by the number of terminals, while the special case Strongly Connected Steiner Subgraph (when we ask for a path from every t i to every other t j ) is known to be W[1]-hard parameterized by the number of terminals. We systematically explore the complexity landscape of directed Steiner problems to fully understand which other special cases are FPT or W[1]-hard. Formally, if ({mathcal {H}} ) is a class of directed graphs, then we look at the special case of Directed Steiner Network where the list ( s 1 , t 1 ), …, ( s d , t d ) of demands form a directed graph that is a member of ({mathcal {H}} ) . Our main result is a complete characterization of the classes ({mathcal {H}} ) resulting in fixed-parameter tractable special cases: we show that if every pattern in ({mathcal {H}} ) has the combinatorial property of being “transitively equivalent to a bounded-length caterpillar with a bounded number of extra edges,” then the problem is FPT, and it is W[1]-hard for every recursively enumerable ({mathcal {H}} ) not having this property. This complete dichotomy unifies and generalizes the known results showing that Directed Steiner Tree is FPT [Dreyfus and Wagner, Networks 1971], q -Root Steiner Tree is FPT for constant q [Suchý, WG 2016], Strongly Connected Steiner Subgraph is W[1]-hard [Guo et al., SIAM J. Discrete Math. 2011], and Directed Steiner Network is solvable in polynomial-time for constant number of terminals [Feldman and Ruhl, SIAM J. Comput. 2006], and moreover reveals a large continent of tractable cases that were not known before.","PeriodicalId":44045,"journal":{"name":"ACM Transactions on Computation Theory","volume":"92 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135494130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Catalytic branching programs from groups and general protocols","authors":"Hugo Côté, P. McKenzie","doi":"10.1145/3583085","DOIUrl":"https://doi.org/10.1145/3583085","url":null,"abstract":"CCCatalytic branching programs (catalytic bps) compute the same n-bit boolean function f at multiple entry points that need to be remembered at the exit nodes of the bp. When a doubly exponential number of entry points is allowed, linear amortized catalytic bp size is known to be achievable for any f. Here a method is introduced that produces a catalytic bp out of a reversible bp and a deterministic dag-like communication protocol. In a multiplicity range as low as linear, approximating a threshold is shown possible at linear amortized cost. In the same low range, computing (texttt {Maj} ) and (texttt {Mod} ) are shown possible at a cost that beats the brute force repetition of the best known bp for these functions by a polylog factor. In the exponential range, the method yields O(nlog n) amortized cost for any symmetric function.","PeriodicalId":44045,"journal":{"name":"ACM Transactions on Computation Theory","volume":" ","pages":""},"PeriodicalIF":0.7,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49359455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Linearly Ordered Colourings of Hypergraphs","authors":"Tamio-Vesa Nakajima, Stanislav Živný","doi":"10.1145/3570909","DOIUrl":"https://doi.org/10.1145/3570909","url":null,"abstract":"A linearly ordered (LO) k-colouring of an r-uniform hypergraph assigns an integer from {1, ... , k } to every vertex so that, in every edge, the (multi)set of colours has a unique maximum. Equivalently, for r = 3, if two vertices in an edge are assigned the same colour, then the third vertex is assigned a larger colour (as opposed to a different colour, as in classic non-monochromatic colouring). Barto, Battistelli, and Berg [STACS’21] studied LO colourings on 3-uniform hypergraphs in the context of promise constraint satisfaction problems (PCSPs). We show two results. First, given a 3-uniform hypergraph that admits an LO 2-colouring, one can find in polynomial time an LO k-colouring with ( k=O(sqrt [3]{n log log n / log n} ) . Second, given an r-uniform hypergraph that admits an LO 2-colouring, we establish NP-hardness of finding an LO k-colouring for every constant uniformity r≥k+2. In fact, we determine relationships between polymorphism minions for all uniformities r≥ 3, which reveals a key difference between r< k+2 and r≥ k+2 and which may be of independent interest. Using the algebraic approach to PCSPs, we actually show a more general result establishing NP-hardness of finding an LO k-colouring for LO ℓ-colourable r-uniform hypergraphs for 2 ≤ ℓ ≤ k and r ≥ k - ℓ + 4.","PeriodicalId":44045,"journal":{"name":"ACM Transactions on Computation Theory","volume":"14 1","pages":"1 - 19"},"PeriodicalIF":0.7,"publicationDate":"2022-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47582306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On Protocols for Monotone Feasible Interpolation","authors":"Lukáš Folwarczný","doi":"10.1145/3583754","DOIUrl":"https://doi.org/10.1145/3583754","url":null,"abstract":"Dag-like communication protocols, a generalization of the classical tree-like communication protocols, are useful objects in the realm of proof complexity (most importantly for monotone feasible interpolation) and circuit complexity. We consider three kinds of protocols in this article (d is the degree of a protocol): — IEQ-d-dags: feasible sets of these protocols are described by inequality which means that the feasible sets are combinatorial triangles; these protocols are also called triangle-dags in the literature, — EQ-d-dags: feasible sets are described by equality, and — c-IEQ-d-dags: feasible sets are described by a conjunction of c inequalities.Garg, Göös, Kamath, and Sokolov (Theory of Computing, 2020) mentioned all these protocols, and they noted that EQ-d-dags are a special case of c-IEQ-d-dags. The exact relationship between these types of protocols is unclear. As our main contribution, we prove the following statement: EQ-2-dags can efficiently simulate c-IEQ-d-dags when c and d are constants. This implies that EQ-2-dags are at least as strong as IEQ-d-dags and that EQ-2-dags have the same strength as c-IEQ-d-dags for c ≥ 2 (because 2-IEQ-2-dags can trivially simulate EQ-2-dags). Hrubeš and Pudlák (Information Processing Letters, 2018) proved that IEQ-d-dags over the monotone Karchmer-Wigderson relation are equivalent to monotone real circuits which implies that we have exponential lower bounds for these protocols. Lower bounds for EQ-2-dags would directly imply lower bounds for the proof system R(LIN).","PeriodicalId":44045,"journal":{"name":"ACM Transactions on Computation Theory","volume":"15 1","pages":"1 - 17"},"PeriodicalIF":0.7,"publicationDate":"2022-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46075631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}