超图的线性有序着色

IF 0.8 Q3 COMPUTER SCIENCE, THEORY & METHODS
Tamio-Vesa Nakajima, Stanislav Živný
{"title":"超图的线性有序着色","authors":"Tamio-Vesa Nakajima, Stanislav Živný","doi":"10.1145/3570909","DOIUrl":null,"url":null,"abstract":"A linearly ordered (LO) k-colouring of an r-uniform hypergraph assigns an integer from {1, ... , k } to every vertex so that, in every edge, the (multi)set of colours has a unique maximum. Equivalently, for r = 3, if two vertices in an edge are assigned the same colour, then the third vertex is assigned a larger colour (as opposed to a different colour, as in classic non-monochromatic colouring). Barto, Battistelli, and Berg [STACS’21] studied LO colourings on 3-uniform hypergraphs in the context of promise constraint satisfaction problems (PCSPs). We show two results. First, given a 3-uniform hypergraph that admits an LO 2-colouring, one can find in polynomial time an LO k-colouring with \\( k=O(\\sqrt [3]{n \\log \\log n / \\log n} \\) . Second, given an r-uniform hypergraph that admits an LO 2-colouring, we establish NP-hardness of finding an LO k-colouring for every constant uniformity r≥k+2. In fact, we determine relationships between polymorphism minions for all uniformities r≥ 3, which reveals a key difference between r< k+2 and r≥ k+2 and which may be of independent interest. Using the algebraic approach to PCSPs, we actually show a more general result establishing NP-hardness of finding an LO k-colouring for LO ℓ-colourable r-uniform hypergraphs for 2 ≤ ℓ ≤ k and r ≥ k - ℓ + 4.","PeriodicalId":44045,"journal":{"name":"ACM Transactions on Computation Theory","volume":"14 1","pages":"1 - 19"},"PeriodicalIF":0.8000,"publicationDate":"2022-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Linearly Ordered Colourings of Hypergraphs\",\"authors\":\"Tamio-Vesa Nakajima, Stanislav Živný\",\"doi\":\"10.1145/3570909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A linearly ordered (LO) k-colouring of an r-uniform hypergraph assigns an integer from {1, ... , k } to every vertex so that, in every edge, the (multi)set of colours has a unique maximum. Equivalently, for r = 3, if two vertices in an edge are assigned the same colour, then the third vertex is assigned a larger colour (as opposed to a different colour, as in classic non-monochromatic colouring). Barto, Battistelli, and Berg [STACS’21] studied LO colourings on 3-uniform hypergraphs in the context of promise constraint satisfaction problems (PCSPs). We show two results. First, given a 3-uniform hypergraph that admits an LO 2-colouring, one can find in polynomial time an LO k-colouring with \\\\( k=O(\\\\sqrt [3]{n \\\\log \\\\log n / \\\\log n} \\\\) . Second, given an r-uniform hypergraph that admits an LO 2-colouring, we establish NP-hardness of finding an LO k-colouring for every constant uniformity r≥k+2. In fact, we determine relationships between polymorphism minions for all uniformities r≥ 3, which reveals a key difference between r< k+2 and r≥ k+2 and which may be of independent interest. Using the algebraic approach to PCSPs, we actually show a more general result establishing NP-hardness of finding an LO k-colouring for LO ℓ-colourable r-uniform hypergraphs for 2 ≤ ℓ ≤ k and r ≥ k - ℓ + 4.\",\"PeriodicalId\":44045,\"journal\":{\"name\":\"ACM Transactions on Computation Theory\",\"volume\":\"14 1\",\"pages\":\"1 - 19\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Computation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3570909\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3570909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 8

摘要

一个r-一致超图的线性有序(LO) k-着色赋值从{1,…, k}到每个顶点,这样,在每条边,(多)颜色集有一个唯一的最大值。同样地,对于r = 3,如果一条边的两个顶点被赋予相同的颜色,那么第三个顶点被赋予更大的颜色(而不是不同的颜色,就像在经典的非单色着色中一样)。Barto、Battistelli和Berg [STACS ' 21]在承诺约束满足问题(pcsp)的背景下研究了3-均匀超图上的LO着色。我们展示了两个结果。首先,给定一个允许LO - 2着色的3-均匀超图,我们可以在多项式时间内用\( k=O(\sqrt [3]{n \log \log n / \log n} \)找到LO - 2着色。其次,给定一个允许LO - 2着色的r-均匀超图,我们建立了对于每一个常数均匀性r≥k+2,寻找LO - 2着色的np -硬度。事实上,我们确定了所有均匀性r≥3的多态性仆从之间的关系,这揭示了r< k+2和r≥k+2之间的关键区别,这可能是独立的兴趣。利用pcsp的代数方法,我们实际上展示了一个更一般的结果,建立了寻找LO -着色的LO -可着色的r-均匀超图的np -硬度,对于2≤r≤k≤k和r≥k- r + 4。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linearly Ordered Colourings of Hypergraphs
A linearly ordered (LO) k-colouring of an r-uniform hypergraph assigns an integer from {1, ... , k } to every vertex so that, in every edge, the (multi)set of colours has a unique maximum. Equivalently, for r = 3, if two vertices in an edge are assigned the same colour, then the third vertex is assigned a larger colour (as opposed to a different colour, as in classic non-monochromatic colouring). Barto, Battistelli, and Berg [STACS’21] studied LO colourings on 3-uniform hypergraphs in the context of promise constraint satisfaction problems (PCSPs). We show two results. First, given a 3-uniform hypergraph that admits an LO 2-colouring, one can find in polynomial time an LO k-colouring with \( k=O(\sqrt [3]{n \log \log n / \log n} \) . Second, given an r-uniform hypergraph that admits an LO 2-colouring, we establish NP-hardness of finding an LO k-colouring for every constant uniformity r≥k+2. In fact, we determine relationships between polymorphism minions for all uniformities r≥ 3, which reveals a key difference between r< k+2 and r≥ k+2 and which may be of independent interest. Using the algebraic approach to PCSPs, we actually show a more general result establishing NP-hardness of finding an LO k-colouring for LO ℓ-colourable r-uniform hypergraphs for 2 ≤ ℓ ≤ k and r ≥ k - ℓ + 4.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Computation Theory
ACM Transactions on Computation Theory COMPUTER SCIENCE, THEORY & METHODS-
CiteScore
2.30
自引率
0.00%
发文量
10
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信