二元多项式优化问题的紧平方和下界

IF 0.8 Q3 COMPUTER SCIENCE, THEORY & METHODS
Adam Kurpisz, Samuli Leppänen, Monaldo Mastrolilli
{"title":"二元多项式优化问题的紧平方和下界","authors":"Adam Kurpisz, Samuli Leppänen, Monaldo Mastrolilli","doi":"10.1145/3626106","DOIUrl":null,"url":null,"abstract":"For binary polynomial optimization problems of degree 2 d with n variables Sakaue, Takeda, Kim and Ito [SIAM J. Optim., 2017] proved that the \\(\\lceil \\frac{n+2d-1}{2}\\rceil \\) th semidefinite (SDP) relaxation in the SoS/Lasserre hierarchy of SDP relaxations provides the exact optimal value. When n is an odd number, we show that their analysis is tight, i.e. we prove that \\(\\frac{n+2d-1}{2} \\) levels of the SoS/Lasserre hierarchy are also necessary. Laurent [Math. Oper. Res., 2003] showed that the Sherali-Adams hierarchy requires n levels to detect the empty integer hull of a linear representation of a set with no integral points. She conjectured that the SoS/Lasserre rank for the same problem is n − 1. In this paper we disprove this conjecture and derive lower and upper bounds for the rank.","PeriodicalId":44045,"journal":{"name":"ACM Transactions on Computation Theory","volume":"19 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Tight Sum-of-Squares lower bounds for binary polynomial optimization problems\",\"authors\":\"Adam Kurpisz, Samuli Leppänen, Monaldo Mastrolilli\",\"doi\":\"10.1145/3626106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For binary polynomial optimization problems of degree 2 d with n variables Sakaue, Takeda, Kim and Ito [SIAM J. Optim., 2017] proved that the \\\\(\\\\lceil \\\\frac{n+2d-1}{2}\\\\rceil \\\\) th semidefinite (SDP) relaxation in the SoS/Lasserre hierarchy of SDP relaxations provides the exact optimal value. When n is an odd number, we show that their analysis is tight, i.e. we prove that \\\\(\\\\frac{n+2d-1}{2} \\\\) levels of the SoS/Lasserre hierarchy are also necessary. Laurent [Math. Oper. Res., 2003] showed that the Sherali-Adams hierarchy requires n levels to detect the empty integer hull of a linear representation of a set with no integral points. She conjectured that the SoS/Lasserre rank for the same problem is n − 1. In this paper we disprove this conjecture and derive lower and upper bounds for the rank.\",\"PeriodicalId\":44045,\"journal\":{\"name\":\"ACM Transactions on Computation Theory\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Computation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3626106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3626106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 16

摘要

Sakaue, Takeda, Kim和Ito [j] .最优化。[j], 2017]证明了\(\lceil \frac{n+2d-1}{2}\rceil \)在SDP松弛的SoS/Lasserre层次中,半确定(SDP)松弛提供了精确的最优值。当n是奇数时,我们证明他们的分析是紧密的,即我们证明SoS/Lasserre层次的\(\frac{n+2d-1}{2} \)级别也是必要的。劳伦特[数学。哦。Res., 2003]表明Sherali-Adams层次需要n个层次来检测没有积分点的集合的线性表示的空整数壳。她推测同样问题的SoS/Lasserre秩是n−1。本文证明了这一猜想,并推导出秩的下界和上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tight Sum-of-Squares lower bounds for binary polynomial optimization problems
For binary polynomial optimization problems of degree 2 d with n variables Sakaue, Takeda, Kim and Ito [SIAM J. Optim., 2017] proved that the \(\lceil \frac{n+2d-1}{2}\rceil \) th semidefinite (SDP) relaxation in the SoS/Lasserre hierarchy of SDP relaxations provides the exact optimal value. When n is an odd number, we show that their analysis is tight, i.e. we prove that \(\frac{n+2d-1}{2} \) levels of the SoS/Lasserre hierarchy are also necessary. Laurent [Math. Oper. Res., 2003] showed that the Sherali-Adams hierarchy requires n levels to detect the empty integer hull of a linear representation of a set with no integral points. She conjectured that the SoS/Lasserre rank for the same problem is n − 1. In this paper we disprove this conjecture and derive lower and upper bounds for the rank.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Computation Theory
ACM Transactions on Computation Theory COMPUTER SCIENCE, THEORY & METHODS-
CiteScore
2.30
自引率
0.00%
发文量
10
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信