Tight Sum-of-Squares lower bounds for binary polynomial optimization problems

IF 0.8 Q3 COMPUTER SCIENCE, THEORY & METHODS
Adam Kurpisz, Samuli Leppänen, Monaldo Mastrolilli
{"title":"Tight Sum-of-Squares lower bounds for binary polynomial optimization problems","authors":"Adam Kurpisz, Samuli Leppänen, Monaldo Mastrolilli","doi":"10.1145/3626106","DOIUrl":null,"url":null,"abstract":"For binary polynomial optimization problems of degree 2 d with n variables Sakaue, Takeda, Kim and Ito [SIAM J. Optim., 2017] proved that the \\(\\lceil \\frac{n+2d-1}{2}\\rceil \\) th semidefinite (SDP) relaxation in the SoS/Lasserre hierarchy of SDP relaxations provides the exact optimal value. When n is an odd number, we show that their analysis is tight, i.e. we prove that \\(\\frac{n+2d-1}{2} \\) levels of the SoS/Lasserre hierarchy are also necessary. Laurent [Math. Oper. Res., 2003] showed that the Sherali-Adams hierarchy requires n levels to detect the empty integer hull of a linear representation of a set with no integral points. She conjectured that the SoS/Lasserre rank for the same problem is n − 1. In this paper we disprove this conjecture and derive lower and upper bounds for the rank.","PeriodicalId":44045,"journal":{"name":"ACM Transactions on Computation Theory","volume":"19 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3626106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 16

Abstract

For binary polynomial optimization problems of degree 2 d with n variables Sakaue, Takeda, Kim and Ito [SIAM J. Optim., 2017] proved that the \(\lceil \frac{n+2d-1}{2}\rceil \) th semidefinite (SDP) relaxation in the SoS/Lasserre hierarchy of SDP relaxations provides the exact optimal value. When n is an odd number, we show that their analysis is tight, i.e. we prove that \(\frac{n+2d-1}{2} \) levels of the SoS/Lasserre hierarchy are also necessary. Laurent [Math. Oper. Res., 2003] showed that the Sherali-Adams hierarchy requires n levels to detect the empty integer hull of a linear representation of a set with no integral points. She conjectured that the SoS/Lasserre rank for the same problem is n − 1. In this paper we disprove this conjecture and derive lower and upper bounds for the rank.
二元多项式优化问题的紧平方和下界
Sakaue, Takeda, Kim和Ito [j] .最优化。[j], 2017]证明了\(\lceil \frac{n+2d-1}{2}\rceil \)在SDP松弛的SoS/Lasserre层次中,半确定(SDP)松弛提供了精确的最优值。当n是奇数时,我们证明他们的分析是紧密的,即我们证明SoS/Lasserre层次的\(\frac{n+2d-1}{2} \)级别也是必要的。劳伦特[数学。哦。Res., 2003]表明Sherali-Adams层次需要n个层次来检测没有积分点的集合的线性表示的空整数壳。她推测同样问题的SoS/Lasserre秩是n−1。本文证明了这一猜想,并推导出秩的下界和上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACM Transactions on Computation Theory
ACM Transactions on Computation Theory COMPUTER SCIENCE, THEORY & METHODS-
CiteScore
2.30
自引率
0.00%
发文量
10
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信