2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)最新文献

筛选
英文 中文
Unsupervised Assisted Sleep staging Classification Algorithm under Fuzzy Few Samples 模糊少样本下的无监督辅助睡眠分期分类算法
2021 11th International Conference on Intelligent Control and Information Processing (ICICIP) Pub Date : 2021-12-03 DOI: 10.1109/ICICIP53388.2021.9642196
Kangning Yin, Rui Zhu, Shaoqi Hou, Guangqiang Yin
{"title":"Unsupervised Assisted Sleep staging Classification Algorithm under Fuzzy Few Samples","authors":"Kangning Yin, Rui Zhu, Shaoqi Hou, Guangqiang Yin","doi":"10.1109/ICICIP53388.2021.9642196","DOIUrl":"https://doi.org/10.1109/ICICIP53388.2021.9642196","url":null,"abstract":"Sleep staging has a strong reference value in modern medicine for doctors to judge patients’ physical and mental state and provide treatment advice. However, in reality, according to the original information of sleep Electroencephalogram (EEG), it is difficult for doctors to manually judge, and sleep staging samples are difficult to obtain, so the data is few. At the same time, the robustness of the sleep staging model obtained only by individual learning is poor. In order to solve the problem of using fuzzy few samples to design the sleep staging prediction model to provide accurate sleep staging information for doctors, an unsupervised auxiliary algorithm model is designed. Firstly, according to the data characteristics of sleep EEG signals, low-pass filtering and fast Fourier transform were performed on the EEG signals recorded during sleep. Sleep stages are performed according to the frequency parameters, and normalization is performed to highlight the wave characteristics of different components. Secondly, due to the existence of different sample data in each stage, unsupervised samples are classified and corrected by K-Means clustering method, and a more robust model is trained under the premise of ensuring the diversity of training samples. Finally, the data set divided by clustering is sent to Support Vector Machine (SVM) classification learning, and the Gaussian kernel function is used to achieve high-dimensional mapping, which can reduce the impact of deviation from the center data on the sample center. The sleep staging classification algorithm designed in this paper can classify the sleep staging under the condition of fuzzy few samples, in the case of equal proportion of training set and test set, the correct rate is higher than 90 %, and in very few samples, the classification accuracy is more than 85 %.","PeriodicalId":435799,"journal":{"name":"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130049238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptive Sliding Mode Synchronization of Different Hyperjerk Chaotic Systems Using RBF Neural Network 基于RBF神经网络的超跳混沌系统自适应滑模同步
2021 11th International Conference on Intelligent Control and Information Processing (ICICIP) Pub Date : 2021-12-03 DOI: 10.1109/ICICIP53388.2021.9642190
Baojie Zhang
{"title":"Adaptive Sliding Mode Synchronization of Different Hyperjerk Chaotic Systems Using RBF Neural Network","authors":"Baojie Zhang","doi":"10.1109/ICICIP53388.2021.9642190","DOIUrl":"https://doi.org/10.1109/ICICIP53388.2021.9642190","url":null,"abstract":"In this paper, we consider the synchronization of hyperjerk chaotic systems with different structures. Besides the order, the systems are unknown with external disturbances. We use sliding mode control method to deal with the external disturbances. Radial basis function (RBF) neural network is proposed to approximate the unknown system. Based on RBF neural network, adaptive sliding mode synchronization of different hyperjerk chaotic systems are introduced. Numerical results show the effectiveness of the synchronization scheme.","PeriodicalId":435799,"journal":{"name":"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"274 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115972592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Competition Model for Modeling and Describing Matthew Effect in Computational Social Systems 计算社会系统中马太效应的竞争模型
2021 11th International Conference on Intelligent Control and Information Processing (ICICIP) Pub Date : 2021-12-03 DOI: 10.1109/ICICIP53388.2021.9642207
Jinyuan Zhang, Lin Wei, Meng Liu, Yubo Deng
{"title":"A Competition Model for Modeling and Describing Matthew Effect in Computational Social Systems","authors":"Jinyuan Zhang, Lin Wei, Meng Liu, Yubo Deng","doi":"10.1109/ICICIP53388.2021.9642207","DOIUrl":"https://doi.org/10.1109/ICICIP53388.2021.9642207","url":null,"abstract":"In this article, a competition model is used to analyze and describe the Matthew effect in social systems. The competition between n participants results in only k winners and the others are reduced to losers. Using the market competition as an example, the model describes the variety of each opinion and the influence of the market environment on it. The model is analyzed through the characteristics of competitive activities and related social phenomena. It was used to simulate changes in competition between dynamic opinions. Eventually, a certain number of opinions win the competition and reach monopoly status. Simulation results demonstrate the efficacy and feasibility of the social competition model.","PeriodicalId":435799,"journal":{"name":"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124161489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
An improved Rapidly-exploring Random Tree Approach for Robotic Dynamic Path Planning 机器人动态路径规划中一种改进的快速探索随机树方法
2021 11th International Conference on Intelligent Control and Information Processing (ICICIP) Pub Date : 2021-12-03 DOI: 10.1109/ICICIP53388.2021.9642182
Kung-Ting Wei, Yaojun Chu, Haiyun Gan
{"title":"An improved Rapidly-exploring Random Tree Approach for Robotic Dynamic Path Planning","authors":"Kung-Ting Wei, Yaojun Chu, Haiyun Gan","doi":"10.1109/ICICIP53388.2021.9642182","DOIUrl":"https://doi.org/10.1109/ICICIP53388.2021.9642182","url":null,"abstract":"Aiming at solving the issue that the existing Rapidly-exploring Random Tree (RRT) algorithm cannot well replan the paths to avoid dynamic obstacles for robotic manipulator autonomously and rapidly in complex cluttered environments, three-dimensional reconstruction of the global dynamic scene around the robotic manipulator is carried out based on RGB-D visual sensor in this paper. A Bi-RRT-Star dynamic path planning approach based on improved exploring function with goal direction is proposed, which is improved from connection strategy, heuristic intensive exploring, and adjacent nodes expansion. On this basis, a multi-step expansion strategy with heuristic greedy is presented. Finally, the relevant evaluation indices of the proposed approach are verified in Virtual Robot Environment Platform (VREP) software. The simulation results show that in comparison with Bi-RRT and RRT-Star algorithms, the proposed method has a higher success rate in dynamic path planning online with less planning time and lower trajectory cost. In addition, a realistic experiment is designed to make UR robotic manipulator avoid human arm random motions dynamically. The experimental results show that the proposed method successfully realizes that robotic manipulator can avoid continuous moving obstacles of human arm online smoothly, comprehensively verifying the effectiveness and superiority.","PeriodicalId":435799,"journal":{"name":"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127978036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discrete-Time ZND Algorithms for Time-Dependent LQ Decomposition Applied to Sound Source Localization 时变LQ分解的离散ZND算法在声源定位中的应用
2021 11th International Conference on Intelligent Control and Information Processing (ICICIP) Pub Date : 2021-12-03 DOI: 10.1109/ICICIP53388.2021.9642202
Jinjin Guo, Yunong Zhang
{"title":"Discrete-Time ZND Algorithms for Time-Dependent LQ Decomposition Applied to Sound Source Localization","authors":"Jinjin Guo, Yunong Zhang","doi":"10.1109/ICICIP53388.2021.9642202","DOIUrl":"https://doi.org/10.1109/ICICIP53388.2021.9642202","url":null,"abstract":"To solve discrete-time LQ decomposition (DTLQD) problem, a 5-step Adams-Bashforth-type (5SAB-type) discrete-time zeroing neural dynamics (DTZND) algorithm is proposed by combining 5-step Adams-Bashforth (AB) method with continuous-time zeroing neural dynamics (CTZND) model. For comparison, general 4-step and 3-step Zhang et al. discretization (ZeaD) formulas are also presented and used to discretize the CTZND model. The corresponding 4-step ZeaD-type (4SZeaDtype) and 3-step ZeaD-type (3SZeaD-type) DTZND algorithms are thus developed. Theoretical analyses and results show that the proposed 5SAB-type DTZND algorithm has higher computational precision than the 4SZeaD-type and 3SZeaD-type DTZND algorithms. Two numerical examples further validate the availability of the three DTZND algorithms and the superiority of the proposed 5SAB-type DTZND algorithm. Moreover, the proposed DTZND algorithms are applied to the sound source localization based on the time difference of arrival (TDOA) technique.","PeriodicalId":435799,"journal":{"name":"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132424476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiple-instance CNN Improved by S3TA for Colon Cancer Classification with Unannotated Histopathological Images S3TA改进的多实例CNN对未注释的组织病理图像进行结肠癌分类
2021 11th International Conference on Intelligent Control and Information Processing (ICICIP) Pub Date : 2021-12-03 DOI: 10.1109/ICICIP53388.2021.9642206
Tiange Ye, Rushi Lan, Xiaonan Luo
{"title":"Multiple-instance CNN Improved by S3TA for Colon Cancer Classification with Unannotated Histopathological Images","authors":"Tiange Ye, Rushi Lan, Xiaonan Luo","doi":"10.1109/ICICIP53388.2021.9642206","DOIUrl":"https://doi.org/10.1109/ICICIP53388.2021.9642206","url":null,"abstract":"In this paper, we propose a new method for colon cancer classification from histopathological images, which can automatically analyze a given whole slide image (WSI). We usually classify cancer classification by referring a WSI, which is typically 20000 × 20000 pixels. The cost of obtaining WSIs with annotating cancer regions is very high. Multiple-instance learning (MIL) is a variant of supervised learning in which the instances in a bag share a single class label. That is, MIL only needs unannotated WSI. In recent years, MIL has developed a hard attention mechanism which has achieved good performance. However, this hard attention mechanism cannot notice the interior of each patch, i.e., it lacks soft attention mechanism. In this paper, a soft, sequential, spatial, top-down attention mechanism (which we abbreviate as S3TA) is used to make up for the lack of MIL attention mechanism. Finally, our experiments show that by varying the number of attention steps in S3TA, we achieved a better accuracy of 93.6% than the old model.","PeriodicalId":435799,"journal":{"name":"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116691800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Application Research on Prediction of Weld Ultrasonic Inspection Results Based on EasyEnsemble and XGBoost Algorithm 基于EasyEnsemble和XGBoost算法的焊缝超声检测结果预测应用研究
2021 11th International Conference on Intelligent Control and Information Processing (ICICIP) Pub Date : 2021-12-03 DOI: 10.1109/ICICIP53388.2021.9642193
Yu Chen, Liang Chen, Yan Wang, Yu Zheng, Huade Su
{"title":"Application Research on Prediction of Weld Ultrasonic Inspection Results Based on EasyEnsemble and XGBoost Algorithm","authors":"Yu Chen, Liang Chen, Yan Wang, Yu Zheng, Huade Su","doi":"10.1109/ICICIP53388.2021.9642193","DOIUrl":"https://doi.org/10.1109/ICICIP53388.2021.9642193","url":null,"abstract":"To reduce the missed inspection rate of unqualified welded seams of the hull, a model based on EasyEnsemble and XGBoost algorithm is proposed to predict the ultrasonic inspection results of welds. Based on historical data of weld ultrasonic inspection, parameters related to the welding quality were selected and these parameters were processed by feature engineering such as normalization and coding. Then effective features were extracted as the model input by principal component analysis (PCA). Considering the low recall of negative samples caused by extremely unbalanced sample data distribution, the EasyEnsemble algorithm was adopted to obtain a balanced training sample set and XGBoost algorithm was used as the base classification model of EasyEnsemble algorithm. The validity of the proposed model was proved by the experiment, the recall of negative samples was greatly improved and the missed inspection rate of unqualified welds was reduced.","PeriodicalId":435799,"journal":{"name":"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116034301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Analysis and Comparison of the Structure and Performance of Local Neural Networks 局部神经网络结构与性能的分析与比较
2021 11th International Conference on Intelligent Control and Information Processing (ICICIP) Pub Date : 2021-12-03 DOI: 10.1109/ICICIP53388.2021.9642169
S. Cong, Kezhi Li
{"title":"Analysis and Comparison of the Structure and Performance of Local Neural Networks","authors":"S. Cong, Kezhi Li","doi":"10.1109/ICICIP53388.2021.9642169","DOIUrl":"https://doi.org/10.1109/ICICIP53388.2021.9642169","url":null,"abstract":"The paper synthesizes the local neural networks. Network structures and their activation functions of three local networks CMAC, B-spline, RBF that are often used to approach functions are analyzed and compared in detail. The network structure of ART-2 is also discussed. Based on the fuzzy system of these local networks, the paper depicts their fuzzy structures and performances. The study and analysis in the paper are useful to instruct to select and design the local neural networks.","PeriodicalId":435799,"journal":{"name":"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128105237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fast Particle Swarm optimization for Balanced Clustering 平衡聚类的快速粒子群优化
2021 11th International Conference on Intelligent Control and Information Processing (ICICIP) Pub Date : 2021-12-03 DOI: 10.1109/ICICIP53388.2021.9642162
Meng Zhang, Yao Xiao, Xiaoling Song, Xiangguang Dai, Nian Zhang
{"title":"Fast Particle Swarm optimization for Balanced Clustering","authors":"Meng Zhang, Yao Xiao, Xiaoling Song, Xiangguang Dai, Nian Zhang","doi":"10.1109/ICICIP53388.2021.9642162","DOIUrl":"https://doi.org/10.1109/ICICIP53388.2021.9642162","url":null,"abstract":"There are balanced priorities in various engineering fields (e.g. medicine, statistics, artificial intelligence, and economics, etc.). Some clustering algorithms cannot maintain the natural balanced structure of data. This paper proposes a soft-balanced clustering framework, which can achieve a balanced clustering for each cluster. The model can be formulated d as a mixed-integer optimization problem. We transform the problem into several subproblems and utilize PSO to search the global solution. Experiments show that the proposed algorithm can achieve satisfactory clustering results than other clustering algorithms.","PeriodicalId":435799,"journal":{"name":"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124908309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Two-stage Multi-frame Cooperative Quality Enhancement on Compressed Video 压缩视频的两阶段多帧协同质量增强
2021 11th International Conference on Intelligent Control and Information Processing (ICICIP) Pub Date : 2021-12-03 DOI: 10.1109/ICICIP53388.2021.9642200
Shengjie Chen, Mao Ye
{"title":"Two-stage Multi-frame Cooperative Quality Enhancement on Compressed Video","authors":"Shengjie Chen, Mao Ye","doi":"10.1109/ICICIP53388.2021.9642200","DOIUrl":"https://doi.org/10.1109/ICICIP53388.2021.9642200","url":null,"abstract":"With the great success of deep learning network, compressed video quality enhancement methods based on deep learning are mushrooming. Most of these methods ignore the correlation between frames and do not make full use of the information of adjacent frames. We propose a two-stage multi-frame cooperative quality enhancement network. Our method consist of two main modules: motion compensation network and quality enhancement network. We use a two-stage enhanced structure to make full use of high-quality frames information and realize the multi-frame cooperative enhancement of a Group of Pictures(GOP), fully considering the correlation between frames. The experimental results on the HEVC standard test sequences show that the proposed method is improved by about 10% compared with MFQE2.0.","PeriodicalId":435799,"journal":{"name":"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124205498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信