基于RBF神经网络的超跳混沌系统自适应滑模同步

Baojie Zhang
{"title":"基于RBF神经网络的超跳混沌系统自适应滑模同步","authors":"Baojie Zhang","doi":"10.1109/ICICIP53388.2021.9642190","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the synchronization of hyperjerk chaotic systems with different structures. Besides the order, the systems are unknown with external disturbances. We use sliding mode control method to deal with the external disturbances. Radial basis function (RBF) neural network is proposed to approximate the unknown system. Based on RBF neural network, adaptive sliding mode synchronization of different hyperjerk chaotic systems are introduced. Numerical results show the effectiveness of the synchronization scheme.","PeriodicalId":435799,"journal":{"name":"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"274 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Sliding Mode Synchronization of Different Hyperjerk Chaotic Systems Using RBF Neural Network\",\"authors\":\"Baojie Zhang\",\"doi\":\"10.1109/ICICIP53388.2021.9642190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the synchronization of hyperjerk chaotic systems with different structures. Besides the order, the systems are unknown with external disturbances. We use sliding mode control method to deal with the external disturbances. Radial basis function (RBF) neural network is proposed to approximate the unknown system. Based on RBF neural network, adaptive sliding mode synchronization of different hyperjerk chaotic systems are introduced. Numerical results show the effectiveness of the synchronization scheme.\",\"PeriodicalId\":435799,\"journal\":{\"name\":\"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)\",\"volume\":\"274 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICIP53388.2021.9642190\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP53388.2021.9642190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了具有不同结构的超跳混沌系统的同步问题。除了阶数外,系统在外界干扰下是未知的。我们采用滑模控制方法来处理外部干扰。提出径向基函数(RBF)神经网络来逼近未知系统。基于RBF神经网络,介绍了不同类型超跳混沌系统的自适应滑模同步。数值结果表明了该同步方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Sliding Mode Synchronization of Different Hyperjerk Chaotic Systems Using RBF Neural Network
In this paper, we consider the synchronization of hyperjerk chaotic systems with different structures. Besides the order, the systems are unknown with external disturbances. We use sliding mode control method to deal with the external disturbances. Radial basis function (RBF) neural network is proposed to approximate the unknown system. Based on RBF neural network, adaptive sliding mode synchronization of different hyperjerk chaotic systems are introduced. Numerical results show the effectiveness of the synchronization scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信