Fast Particle Swarm optimization for Balanced Clustering

Meng Zhang, Yao Xiao, Xiaoling Song, Xiangguang Dai, Nian Zhang
{"title":"Fast Particle Swarm optimization for Balanced Clustering","authors":"Meng Zhang, Yao Xiao, Xiaoling Song, Xiangguang Dai, Nian Zhang","doi":"10.1109/ICICIP53388.2021.9642162","DOIUrl":null,"url":null,"abstract":"There are balanced priorities in various engineering fields (e.g. medicine, statistics, artificial intelligence, and economics, etc.). Some clustering algorithms cannot maintain the natural balanced structure of data. This paper proposes a soft-balanced clustering framework, which can achieve a balanced clustering for each cluster. The model can be formulated d as a mixed-integer optimization problem. We transform the problem into several subproblems and utilize PSO to search the global solution. Experiments show that the proposed algorithm can achieve satisfactory clustering results than other clustering algorithms.","PeriodicalId":435799,"journal":{"name":"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP53388.2021.9642162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

There are balanced priorities in various engineering fields (e.g. medicine, statistics, artificial intelligence, and economics, etc.). Some clustering algorithms cannot maintain the natural balanced structure of data. This paper proposes a soft-balanced clustering framework, which can achieve a balanced clustering for each cluster. The model can be formulated d as a mixed-integer optimization problem. We transform the problem into several subproblems and utilize PSO to search the global solution. Experiments show that the proposed algorithm can achieve satisfactory clustering results than other clustering algorithms.
平衡聚类的快速粒子群优化
在不同的工程领域(如医学、统计学、人工智能和经济学等)有平衡的优先级。一些聚类算法不能保持数据的自然平衡结构。本文提出了一种软平衡聚类框架,可以实现每个集群的均衡聚类。该模型可表述为一个混合整数优化问题。将该问题分解为若干子问题,利用粒子群算法搜索全局解。实验表明,与其他聚类算法相比,该算法可以获得满意的聚类结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信