Discrete-Time ZND Algorithms for Time-Dependent LQ Decomposition Applied to Sound Source Localization

Jinjin Guo, Yunong Zhang
{"title":"Discrete-Time ZND Algorithms for Time-Dependent LQ Decomposition Applied to Sound Source Localization","authors":"Jinjin Guo, Yunong Zhang","doi":"10.1109/ICICIP53388.2021.9642202","DOIUrl":null,"url":null,"abstract":"To solve discrete-time LQ decomposition (DTLQD) problem, a 5-step Adams-Bashforth-type (5SAB-type) discrete-time zeroing neural dynamics (DTZND) algorithm is proposed by combining 5-step Adams-Bashforth (AB) method with continuous-time zeroing neural dynamics (CTZND) model. For comparison, general 4-step and 3-step Zhang et al. discretization (ZeaD) formulas are also presented and used to discretize the CTZND model. The corresponding 4-step ZeaD-type (4SZeaDtype) and 3-step ZeaD-type (3SZeaD-type) DTZND algorithms are thus developed. Theoretical analyses and results show that the proposed 5SAB-type DTZND algorithm has higher computational precision than the 4SZeaD-type and 3SZeaD-type DTZND algorithms. Two numerical examples further validate the availability of the three DTZND algorithms and the superiority of the proposed 5SAB-type DTZND algorithm. Moreover, the proposed DTZND algorithms are applied to the sound source localization based on the time difference of arrival (TDOA) technique.","PeriodicalId":435799,"journal":{"name":"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP53388.2021.9642202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To solve discrete-time LQ decomposition (DTLQD) problem, a 5-step Adams-Bashforth-type (5SAB-type) discrete-time zeroing neural dynamics (DTZND) algorithm is proposed by combining 5-step Adams-Bashforth (AB) method with continuous-time zeroing neural dynamics (CTZND) model. For comparison, general 4-step and 3-step Zhang et al. discretization (ZeaD) formulas are also presented and used to discretize the CTZND model. The corresponding 4-step ZeaD-type (4SZeaDtype) and 3-step ZeaD-type (3SZeaD-type) DTZND algorithms are thus developed. Theoretical analyses and results show that the proposed 5SAB-type DTZND algorithm has higher computational precision than the 4SZeaD-type and 3SZeaD-type DTZND algorithms. Two numerical examples further validate the availability of the three DTZND algorithms and the superiority of the proposed 5SAB-type DTZND algorithm. Moreover, the proposed DTZND algorithms are applied to the sound source localization based on the time difference of arrival (TDOA) technique.
时变LQ分解的离散ZND算法在声源定位中的应用
为了解决离散时间LQ分解(DTLQD)问题,将5步Adams-Bashforth (AB)方法与连续时间归零神经动力学(CTZND)模型相结合,提出了一种5步Adams-Bashforth-type (5ab -type)离散时间归零神经动力学(DTZND)算法。为了比较,Zhang等人还提出了一般的4步和3步离散化(ZeaD)公式,并将其用于CTZND模型的离散化。由此提出了相应的4步ZeaD-type (4SZeaDtype)和3步ZeaD-type (3SZeaD-type) DTZND算法。理论分析和结果表明,5ab型DTZND算法比4szead型和3szead型DTZND算法具有更高的计算精度。两个算例进一步验证了三种DTZND算法的有效性以及所提出的5ab型DTZND算法的优越性。并将所提出的DTZND算法应用于基于到达时差(TDOA)技术的声源定位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信