{"title":"Discrete-Time ZND Algorithms for Time-Dependent LQ Decomposition Applied to Sound Source Localization","authors":"Jinjin Guo, Yunong Zhang","doi":"10.1109/ICICIP53388.2021.9642202","DOIUrl":null,"url":null,"abstract":"To solve discrete-time LQ decomposition (DTLQD) problem, a 5-step Adams-Bashforth-type (5SAB-type) discrete-time zeroing neural dynamics (DTZND) algorithm is proposed by combining 5-step Adams-Bashforth (AB) method with continuous-time zeroing neural dynamics (CTZND) model. For comparison, general 4-step and 3-step Zhang et al. discretization (ZeaD) formulas are also presented and used to discretize the CTZND model. The corresponding 4-step ZeaD-type (4SZeaDtype) and 3-step ZeaD-type (3SZeaD-type) DTZND algorithms are thus developed. Theoretical analyses and results show that the proposed 5SAB-type DTZND algorithm has higher computational precision than the 4SZeaD-type and 3SZeaD-type DTZND algorithms. Two numerical examples further validate the availability of the three DTZND algorithms and the superiority of the proposed 5SAB-type DTZND algorithm. Moreover, the proposed DTZND algorithms are applied to the sound source localization based on the time difference of arrival (TDOA) technique.","PeriodicalId":435799,"journal":{"name":"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP53388.2021.9642202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
To solve discrete-time LQ decomposition (DTLQD) problem, a 5-step Adams-Bashforth-type (5SAB-type) discrete-time zeroing neural dynamics (DTZND) algorithm is proposed by combining 5-step Adams-Bashforth (AB) method with continuous-time zeroing neural dynamics (CTZND) model. For comparison, general 4-step and 3-step Zhang et al. discretization (ZeaD) formulas are also presented and used to discretize the CTZND model. The corresponding 4-step ZeaD-type (4SZeaDtype) and 3-step ZeaD-type (3SZeaD-type) DTZND algorithms are thus developed. Theoretical analyses and results show that the proposed 5SAB-type DTZND algorithm has higher computational precision than the 4SZeaD-type and 3SZeaD-type DTZND algorithms. Two numerical examples further validate the availability of the three DTZND algorithms and the superiority of the proposed 5SAB-type DTZND algorithm. Moreover, the proposed DTZND algorithms are applied to the sound source localization based on the time difference of arrival (TDOA) technique.