Y. Wang, S. Bale, James Alfred Walker, M. Trefzer, A. Tyrrell
{"title":"Multiobjective genetic algorithm for routability-driven circuit clustering on FPGAs","authors":"Y. Wang, S. Bale, James Alfred Walker, M. Trefzer, A. Tyrrell","doi":"10.1109/ICES.2014.7008729","DOIUrl":"https://doi.org/10.1109/ICES.2014.7008729","url":null,"abstract":"This paper presents a novel routability-driven circuit clustering (packing) technique, DBPack, to improve function packing on FPGAs. We address a number of challenges when optimising packing of generic FPGA architectures, which are input bandwidth constraints (the number of unique cluster input signals is greater than the number of unique signals available from routing channel), density of packing to satisfy area constraints and minimisation of exposed nets outside the cluster in order to facilitate routability. In order to achieve optimal trade-off solutions when mapping for groups of Basic Logic Elements (BLEs) into clusters with regard to multiple objectives, we have developed a population based circuit clustering algorithm based on non-dominated sorting multi-objective genetic algorithm (NSGA-II). Our proposed method is tested using a number of the “Golden 20” MCNC benchmark circuits that are regularly used in FPGA-related literature. The results show that the techniques proposed in the paper considerably improve both packing density of clusters and their routability when compared to the state-of-art routability-driven packing algorithms, including VPack, T-VPack and RPack.","PeriodicalId":432958,"journal":{"name":"2014 IEEE International Conference on Evolvable Systems","volume":"304 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131925341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"How evolvable is novelty search?","authors":"D. Shorten, G. Nitschke","doi":"10.1109/ICES.2014.7008731","DOIUrl":"https://doi.org/10.1109/ICES.2014.7008731","url":null,"abstract":"This research compares the efficacy of novelty versus objective based search for producing evolvable populations in the maze solving task. Populations of maze solving simulated robot controllers were evolved to solve a variety of different, relatively easy, mazes. This evolution took place using either novelty or objective-based search. Once a solution was found, the simulation environment was changed to one of a variety of more complex mazes. Here the population was evolved to find a solution to the new maze, once again with either novelty or objective based search. It was found that, regardless of whether the search in the second maze was directed by novelty or fitness, populations that had been evolved under a fitness paradigm in the first maze were more likely to find a solution to the second. These results suggest that populations of controllers adapted under novelty search are less evolvable compared to objective based search in the maze solving task.","PeriodicalId":432958,"journal":{"name":"2014 IEEE International Conference on Evolvable Systems","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115543593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improvements to Evolutionary Model Consistency Checking for a Flapping-Wing Micro Air Vehicle","authors":"J. Gallagher, S. Boddhu, E. Matson, G. Greenwood","doi":"10.1109/ICES.2014.7008741","DOIUrl":"https://doi.org/10.1109/ICES.2014.7008741","url":null,"abstract":"Evolutionary Computation has been suggested as a means of providing ongoing adaptation of robot controllers. Most often, using Evolutionary Computation to that end focuses on recovery of acceptable robot performance with less attention given to diagnosing the nature of the failure that necessitated the adaptation. In previous work, we introduced the concept of Evolutionary Model Consistency Checking in which candidate robot controller evaluations were dual-purposed for both evolving control solutions and extracting robot fault diagnoses. In that less developed work, we could only detect single wing damage faults in a simulated Flapping Wing Micro Air Vehicle. We now extend the method to enable detection and diagnosis of both single wing and dual wing faults. This paper explains those extensions, demonstrates their efficacy via simulation studies, and provides discussion on the possibility of augmenting EC adaptation by exploiting extracted fault diagnoses to speed EC search.","PeriodicalId":432958,"journal":{"name":"2014 IEEE International Conference on Evolvable Systems","volume":"124 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123584042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Towards self-adaptive caches: A run-time reconfigurable multi-core infrastructure","authors":"Nam Ho, Paul Kaufmann, M. Platzner","doi":"10.1109/ICES.2014.7008719","DOIUrl":"https://doi.org/10.1109/ICES.2014.7008719","url":null,"abstract":"This paper presents the first steps towards the implementation of an evolvable and self-adaptable processor cache. The implemented system consists of a run-time reconfigurable memory-to-cache address mapping engine embedded into the split level one cache of a Leon3 SPARC processor as well as of an measurement infrastructure able to profile microarchitectural and custom logic events based on the standard Linux performance measurement interface perf_event. The implementation shows, how reconfiguration of the very basic processor properties, and fine granular profiling of custom logic and integer unit events can be realized and meaningfully used to create an adaptable multi-core embedded system.","PeriodicalId":432958,"journal":{"name":"2014 IEEE International Conference on Evolvable Systems","volume":"388 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132453746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pedro B. Campos, M. Trefzer, James Alfred Walker, S. Bale, A. Tyrrell
{"title":"Optimising ring oscillator frequency on a novel FPGA device via partial reconfiguration","authors":"Pedro B. Campos, M. Trefzer, James Alfred Walker, S. Bale, A. Tyrrell","doi":"10.1109/ICES.2014.7008727","DOIUrl":"https://doi.org/10.1109/ICES.2014.7008727","url":null,"abstract":"The random variations which are present at submicron technology nodes have been proven to have significant impact on both yield and device performance. The circuit-scale effects of transistor variability for a particular architecture are hard to estimate, and device manufacturers face the risk of functional failures due to these stochastic variations, which is a growing problem for the FPGA community and the circuit design community in general. The novel PAnDA architecture aims to tackle some of those effects by allowing post-fabrication reconfiguration of the fabric, which in turn makes it possible to both optimise performance of a singular chip and to reduce the impact that these adverse effects have on manufacturing yield. A series of 3 stage ring oscillator circuits are mapped onto the PAnDA fabric, and a Genetic Algorithm is used to find a configuration which minimises the difference in frequency between the oscillator outputs and a target. Combinations of transistor sizes are used to induce changes in the performance of the logic blocks. A configuration is found which reduces the difference in frequencies to less than 1.5%.","PeriodicalId":432958,"journal":{"name":"2014 IEEE International Conference on Evolvable Systems","volume":"287 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132007301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"In-situ evolution of an antenna array with hardware fault recovery","authors":"J. Becker, J. Lohn, D. Linden","doi":"10.1109/ICES.2014.7008724","DOIUrl":"https://doi.org/10.1109/ICES.2014.7008724","url":null,"abstract":"We present a system for performing evolution directly on an antenna array. The system is composed of three programmable antennas and runs in an antenna chamber under the control of an evolutionary algorithm. Fitness is measured in two ways. First, we assess how well the antenna array radiation pattern matches a desired null-steering pattern, which changes over time. Second, we measure how well the algorithms are able to reconfigure the arrays hardware settings to recover from a localized hardware fault within the array. We describe the in-situ evolution hardware system, the algorithms used, and the experimental setup. The results show that two types of genetic algorithms and the simulated annealing algorithm were able to adapt, in-situ, the antenna arrays output pattern to a target nulling pattern. We also show that the evolutionary algorithms were able to reconfigure the array to re-steer nulls correctly following the introduction of localized hardware faults into the array. This provides a proof-of-concept for the idea of self-healing antenna arrays.","PeriodicalId":432958,"journal":{"name":"2014 IEEE International Conference on Evolvable Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114309899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maktuba Mohid, J. Miller, Simon Harding, G. Tufte, O. R. Lykkebø, M. K. Massey, M. Petty
{"title":"Evolution-in-materio: Solving bin packing problems using materials","authors":"Maktuba Mohid, J. Miller, Simon Harding, G. Tufte, O. R. Lykkebø, M. K. Massey, M. Petty","doi":"10.1109/ICES.2014.7008720","DOIUrl":"https://doi.org/10.1109/ICES.2014.7008720","url":null,"abstract":"Evolution-in-materio (EIM) is a form of intrinsic evolution in which evolutionary algorithms are allowed to manipulate physical variables that are applied to materials. This method aims to configure materials so that they solve computational problems without requiring a detailed understanding of the properties of the materials. The concept gained attention through the work of Adrian Thompson who in 1996 showed that evolution could be used to design circuits in FPGAS that exploited the physical properties of the underlying silicon [21]. In this paper, we show that using a purpose-built hardware platform called Mecobo, we can solve computational problems by evolving voltages, signals and the way they are applied to a microelectrode array with a chamber containing single-walled carbon nanotubes and a polymer. Here we demonstrate for the first time that this methodology can be applied to the well-known computational problem of bin packing. Results on benchmark problems show that the technique can obtain results reasonably close to the known global optima. This suggests that EIM is a promising method for configuring materials to carry out useful computation.","PeriodicalId":432958,"journal":{"name":"2014 IEEE International Conference on Evolvable Systems","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123775263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Towards compositional coevolution in evolutionary circuit design","authors":"Michaela Sikulová, Gergely Komjathy, L. Sekanina","doi":"10.1109/ICES.2014.7008735","DOIUrl":"https://doi.org/10.1109/ICES.2014.7008735","url":null,"abstract":"A divide and conquer approach is one of the methods introduced to get over the scalability problem of the evolutionary circuit design. A complex circuit is decomposed into modules which are evolved separately and without any interaction. The benefits are in reducing the search space and accelerating the evaluation of candidate circuits. In this paper, the evolution of non-interacting modules is replaced by a coevolutionary algorithm, in which the fitness of a module depends on fitness values of other modules, i.e. the modules are adapted to work together. The proposed method is embedded into Cartesian genetic programming (CGP). The coevolutionary approach was evaluated in the design of a switching image filter which was decomposed into the filtering module and detector module. The filters evolved using the proposed coevolutionary method show a higher quality of filtering in comparison with filters utilizing independently evolved modules. Furthermore, the whole design process was accelerated 1.31 times in comparison with the standard CGP.","PeriodicalId":432958,"journal":{"name":"2014 IEEE International Conference on Evolvable Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129911745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Supervised learning of DPLL based winner-take-all neural network","authors":"Masaki Azuma, H. Hikawa","doi":"10.1109/ICES.2014.7008730","DOIUrl":"https://doi.org/10.1109/ICES.2014.7008730","url":null,"abstract":"Neural networks are widely used in various fields due to their superior learning abilities. This paper proposes a hardware winner-take-all neural network (WTANN) that employs a new winner-take-all (WTA) circuit with phase-modulated pulse signals and digital phase-locked loops (DPLLs). The system uses DPLL as a computing element, so all input values are expressed by phases of rectangular signals. The proposed WTA circuit employs a simple winner search circuit. The proposed WTANN architecture is described by very high speed integrated circuit (VHSIC) Hardware Description Language (VHDL) and its feasibility was tested and verified through simulations. Conventional WTA takes a centralized winner search approach, in which vector distances are collected from all neurons and compared. In contrast, the winner search in the proposed system is carried out locally by a distributed winner search circuit among neurons. Therefore, no global communication channels with a wide bandwidth between the winner search module and each neuron are required. Furthermore, the proposed WTANN can easily extend the system scale, merely by increasing the number of neurons. Vector classifications with WTANN using two kinds of data sets, Iris and Wine, were carried out in VHDL simulations. The circuit size and speed were then evaluated by applying the VHDL description to a logic synthesis tool and experiments using FPGA. The results revealed that the proposed WTANN achieved valid learning.","PeriodicalId":432958,"journal":{"name":"2014 IEEE International Conference on Evolvable Systems","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134265880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maktuba Mohid, J. Miller, Simon Harding, G. Tufte, O. R. Lykkebø, M. K. Massey, M. Petty
{"title":"Evolution-in-materio: A frequency classifier using materials","authors":"Maktuba Mohid, J. Miller, Simon Harding, G. Tufte, O. R. Lykkebø, M. K. Massey, M. Petty","doi":"10.1109/ICES.2014.7008721","DOIUrl":"https://doi.org/10.1109/ICES.2014.7008721","url":null,"abstract":"Evolution-in-materio (EIM) is a method that uses artificial evolution to exploit properties of materials to solve computational problems without requiring a detailed understanding of such properties. In this paper, we describe experiments using a purpose-built EIM platform called Mecobo to classify whether an applied square wave signal is above or below a user-defined threshold. This is the first demonstration that electrical configurations of materials (carbon nanotubes and a polymer) can be evolved to act as frequency classifiers.","PeriodicalId":432958,"journal":{"name":"2014 IEEE International Conference on Evolvable Systems","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115394873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}