Chin-Ta Chen, Xiaochuan Xu, A. Hosseini, Zeyu Pan, Ray T. Chen
{"title":"High efficiency silicon strip waveguide to plasmonic slot waveguide mode converter","authors":"Chin-Ta Chen, Xiaochuan Xu, A. Hosseini, Zeyu Pan, Ray T. Chen","doi":"10.1117/12.2080491","DOIUrl":"https://doi.org/10.1117/12.2080491","url":null,"abstract":"high-efficiency silicon strip waveguide to plasmonic slot waveguide converter based on the hybrid silicon-gold taper is proposed and optimized. Through investigating the mode matching, the effective index matching, and the metallic absorption loss considerations, the hybrid silicon-gold taper with an overall length of 1.7 μm having a very high conversion efficiency of 93.3% at 1550nm is achieved. Besides, the configuration limitations for restricting this mode converter to achieve a 100 % conversion efficiency are also studied in this paper. Such a high efficiency converter will be an essential component in ultra-compact integrated circuits.","PeriodicalId":432115,"journal":{"name":"Photonics West - Optoelectronic Materials and Devices","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122790388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analytical (mathematical) predictive modeling in fiber optics structural analysis (FOSA): review and extension","authors":"E. Suhir","doi":"10.1117/12.2074964","DOIUrl":"https://doi.org/10.1117/12.2074964","url":null,"abstract":"An updated version of the paper with revised references has been published The review part of the paper addresses analytical (mathematical) modeling in structural analysis in fiber optics engineering, mostly fiber optics interconnects, and deals with optical fibers subjected to thermal and/or mechanical loading (stresses) in bending, tension, compression, or to the combinations of such loadings. Attributes and significance of predictive modeling are indicated and discussed. The review is based mostly on the author’s research conducted at Bell Laboratories, Physical Sciences and Engineering Research Division, Murray Hill, NJ, USA, during his tenure with this company, and, to a lesser extent, on his recent work in the field. The addressed structures include, but are not limited to, optical fibers of finite length: bare fibers; jacketed and dual-coated fibers; fibers experiencing thermal loading; fibers soldered into ferrules or adhesively bonded into capillaries; as well as the roles of geometric and material non-linearity; dynamic response to shocks and vibrations; and possible applications of nano-materials in new generations of coating and cladding systems. The extension part is concerned with a novel, fruitful and challenging directionprobabilistic design for reliability (PDfR) of opto-electronic and photonic products, including optical fibers and interconnects. The rationale behind the PDfR concept is that there is no such thing as zero probability of failure, that the difference between a highly reliable product and an insufficiently reliable product is “merely” in the level of the never zero probability of its failure and that when the operational performance of the product is imperative, the ability to predict, quantify, assure and, if possible and appropriate, even specify its reliability is highly desirable. Accordingly, the objective of the PDfR effort is to quantify the likelihood of an operational failure of a material, device or a system, including the field of fiber optics.","PeriodicalId":432115,"journal":{"name":"Photonics West - Optoelectronic Materials and Devices","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126814369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Photoluminescence quenching effect by Si cap in n+ Ge on Si","authors":"H. Pan, R. Takahashi, K. Takinai, K. Wada","doi":"10.1117/12.2078593","DOIUrl":"https://doi.org/10.1117/12.2078593","url":null,"abstract":"Monolithically integrated Ge lasers on Si have long been one of the biggest challenges for electronic and photonic integration on Si Complementary Metal Oxide Semiconductor (CMOS) platform. The “last one mile” is to reduce the threshold current of the electrically pumped Ge-on-Si laser. We have studied the growth of heavily doped n type (n+) Ge and analyzed its photoluminescence (PL) characteristics of Ge with a Si cap and thermal oxide layers. It is found that the PL intensity of n+ Ge was significantly reduced by the cap and etching off the cap showed a ~100% recovery to the intensity of n+ Ge without the cap. Thermally oxidized n+ Ge, on the other hand, showed a ~50% increase in the PL intensity of uncapped n+ Ge. These finding indicated that capping of n+ Ge introduces non-radiative recombination centers due to defects (dislocations) to reduce the PL intensity, while oxidation passivates surface defects remained even on uncapped n+ Ge. Considering these, we have designed and fabricated an electrically pumped n+ Ge light emitting diode with no Si cap layer but oxidation. A broad luminescence of Ge at 1500-1700 nm has been demonstrated but yet lasing not observed.","PeriodicalId":432115,"journal":{"name":"Photonics West - Optoelectronic Materials and Devices","volume":"67 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115860440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H. Schröder, L. Brusberg, R. Pitwon, S. Whalley, Kai Wang, Allen M. Miller, C. Herbst, D. Weber, K. Lang
{"title":"Electro-optical backplane demonstrator with integrated multimode gradient-index thin glass waveguide panel","authors":"H. Schröder, L. Brusberg, R. Pitwon, S. Whalley, Kai Wang, Allen M. Miller, C. Herbst, D. Weber, K. Lang","doi":"10.1117/12.2076254","DOIUrl":"https://doi.org/10.1117/12.2076254","url":null,"abstract":"Optical interconnects for data transmission at board level offer increased energy efficiency, system density, and bandwidth scalability compared to purely copper driven systems. We present recent results on manufacturing of electrooptical printed circuit board (PCB) with integrated planar glass waveguides. The graded index multi-mode waveguides are patterned inside commercially available thin-glass panels by performing a specific ion-exchange process. The glass waveguide panel is embedded within the layer stack-up of a PCB using proven industrial processes. This paper describes the design, manufacture, assembly and characterization of the first electro-optical backplane demonstrator based on integrated planar glass waveguides. The electro-optical backplane in question is created by laminating the glass waveguide panel into a conventional multi-layer electronic printed circuit board stack-up. High precision ferrule mounts are automatically assembled, which will enable MT compliant connectors to be plugged accurately to the embedded waveguide interfaces on the glass panel edges. The demonstration platform comprises a standardized sub-rack chassis and five pluggable test cards each housing optical engines and pluggable optical connectors. The test cards support a variety of different data interfaces and can support data rates of up to 32 Gb/s per channel.","PeriodicalId":432115,"journal":{"name":"Photonics West - Optoelectronic Materials and Devices","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116976036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joe C. P. Liu, Allen Lee, M. Hu, Lisa Chan, Sean Huang, Brandon W. Swatowski, W. Weidner, Joseph S. Han
{"title":"Manufacturability and optical functionality of multimode optical interconnections developed with fast processable and reliable polymer waveguide silicones","authors":"Joe C. P. Liu, Allen Lee, M. Hu, Lisa Chan, Sean Huang, Brandon W. Swatowski, W. Weidner, Joseph S. Han","doi":"10.1117/12.2079135","DOIUrl":"https://doi.org/10.1117/12.2079135","url":null,"abstract":"We report on the manufacturing, reliability, and optical functionality of multimode optical waveguide devices developed with a fast processable optical grade silicone. The materials show proven optical losses of <0.05 dB/cm @ 850 nm, surviving >2000 hours 85°C/85% relative humidity testing as well as >4 cycles of wave solder reflow. Fabrication speeds of <10 minutes are shown for a full waveguide stack. Step index 50×50 μm waveguides were fabricated and passively MT connectorized on rigid FR4 and flexible polyimide substrates with precise alignment features (cut by dicing saw or ablated by UV laser). Two out-of-plane coupling techniques were demonstrated in this paper, a MT connectorized sample with a 45° turning lens as well as 45° dielectric mirrors on waveguides by dicing saw. Multiple connections between fiber and polymer waveguides with MPO and two out-of-plane coupling techniques in a complete optical link are demonstrated @ 10 Gbps data rates with commercial transceiver modules. Also, complex waveguide geometries such as turnings and crossings are demonstrated by QSFP+ transceiver. The eye diagram analyses show comparable results in functionality between silicone waveguide and fiber formats.","PeriodicalId":432115,"journal":{"name":"Photonics West - Optoelectronic Materials and Devices","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125378932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
G. Böttger, M. Queisser, Norbert Arndt-Staufenbiel, H. Schröder, K. Lang
{"title":"Building blocks for actively-aligned micro-optical systems in rapid prototyping and small series production","authors":"G. Böttger, M. Queisser, Norbert Arndt-Staufenbiel, H. Schröder, K. Lang","doi":"10.1117/12.2079617","DOIUrl":"https://doi.org/10.1117/12.2079617","url":null,"abstract":"In recent years there has been considerable progress in utilizing fully automated machines for the assembly of microoptical systems. Such systems integrate laser sources, optical elements and detectors into tight packages, and efficiently couple light to free space beams, waveguides in optical backplanes, or optical fibers for longer reach transmission. The required electrical-optical and optical components are placed and aligned actively in more than one respect. For one, all active components are actually operated in the alignment process, and, more importantly, the placing of all components is controlled actively by camera systems and power detectors with live feedback for an optimal coupling efficiency. The total number of optical components typically is in the range of 5 to 50, whereas the number of actors with gripping tools for the actual handling and aligning is limited, with little flexibility in the gripping width. The assembly process therefore is strictly sequential and, given that an automated tool changing has not been established in this class of machines yet, there are either limitations in the geometries of components that may be used, or time-consuming interaction by human operators is needed. As a solution we propose and present lasered glass building blocks with standardized gripping geometries that enclose optical elements of various shapes and functionalities. These are cut as free form geometries with green short pulse and CO2 lasers. What seems to add cost at first rather increases freedom of design and adds an economical flexibility to create very hybrid assemblies of various micro-optical assemblies also in small numbers.","PeriodicalId":432115,"journal":{"name":"Photonics West - Optoelectronic Materials and Devices","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125159659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Justice, U. Khan, T. Korhonen, A. Boersma, S. Wiegersma, M. Karppinen, B. Corbett
{"title":"Design, fabrication and characterisation of nano-imprinted single mode waveguide structures for intra-chip optical communications","authors":"J. Justice, U. Khan, T. Korhonen, A. Boersma, S. Wiegersma, M. Karppinen, B. Corbett","doi":"10.1117/12.2078974","DOIUrl":"https://doi.org/10.1117/12.2078974","url":null,"abstract":"In the Information and Communications Technology (ICT) sector, the demands on bandwidth continually grow due to increased microprocessor performance and the need to access ever increasing amounts of stored data. The introduction of optical data transmission (e.g. glass fiber) to replace electronic transmission (e.g. copper wire) has alleviated the bandwidth issue for communications over distances greater than 10 meters, however, the need has arisen for optical data transfer over shorter distances such as those found inside computers. A possible solution for this is the use of low–cost single mode polymer based optical waveguides fabricated by direct patterning Nanoimprint Lithography (NIL). NIL has emerged as a scalable manufacturing technology capable of producing features down to the hundred nanometer scale with the potential for large scale (roll-to-roll) manufacturing. In this paper, we present results on the modeling, fabrication and characterization of single mode waveguides and optical components in low-loss ORMOCER™ materials. Single mode waveguides with a mode field diameter of 7 μm and passive structures such as bends, directional couplers and multi-mode interferometers (MMIs) suitable for use in 1550 nm optical interconnects were fabricated using wafer scale NIL processes. Process issues arising from the nano-imprint technique such as residual layers and angled sidewalls are modeled and investigated for excess loss and higher order mode excitation. Conclusions are drawn on the applicability of nano-imprinting to the fabrication of circuits for intrachip/ board-level optical interconnect.","PeriodicalId":432115,"journal":{"name":"Photonics West - Optoelectronic Materials and Devices","volume":"103 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129952207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
G. Jiang, S. Baig, Hui Lu, K. Shen, Michael R. Wang
{"title":"Planar concave grating with flattened spectral response for wavelength demultiplexing optical interconnection","authors":"G. Jiang, S. Baig, Hui Lu, K. Shen, Michael R. Wang","doi":"10.1117/12.2080380","DOIUrl":"https://doi.org/10.1117/12.2080380","url":null,"abstract":"A 4-channel planar concave grating device with a flattened spectral response based on SU-8 polymer is presented. The flattened spectral response is accomplished by using an optimized multi-mode interference coupler as the input aperture of the device for spectrally separated channels. The mode field distribution in the input plane is controlled by adjusting the width of input taper coupled to the multi-mode interference coupler. The effects of the input taper width on the flattened spectral response are demonstrated in detail through simulation results. The devices are realized by using an SU-8 polymer strip waveguide with a UV lithography technology. Experimental results show that the flattened spectral response can be easily controlled by adjusting the taper width.","PeriodicalId":432115,"journal":{"name":"Photonics West - Optoelectronic Materials and Devices","volume":"52 67 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124621258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Towards energy-efficient photonic interconnects","authors":"Y. Demir, Nikos Hardavellas","doi":"10.1117/12.2080496","DOIUrl":"https://doi.org/10.1117/12.2080496","url":null,"abstract":"Silicon photonics have emerged as a promising solution to meet the growing demand for high-bandwidth, low-latency, and energy-efficient on-chip and off-chip communication in many-core processors. However, current silicon-photonic interconnect designs for many-core processors waste a significant amount of power because (a) lasers are always on, even during periods of interconnect inactivity, and (b) microring resonators employ heaters which consume a significant amount of power just to overcome thermal variations and maintain communication on the photonic links, especially in a 3D-stacked design. The problem of high laser power consumption is particularly important as lasers typically have very low energy efficiency, and photonic interconnects often remain underutilized both in scientific computing (compute-intensive execution phases underutilize the interconnect), and in server computing (servers in Google-scale datacenters have a typical utilization of less than 30%). We address the high laser power consumption by proposing EcoLaser+, which is a laser control scheme that saves energy by predicting the interconnect activity and opportunistically turning the on-chip laser off when possible, and also by scaling the width of the communication link based on a runtime prediction of the expected message length. Our laser control scheme can save up to 62 - 92% of the laser energy, and improve the energy efficiency of a manycore processor with negligible performance penalty. We address the high trimming (heating) power consumption of the microrings by proposing insulation methods that reduce the impact of localized heating induced by highly-active components on the 3D-stacked logic die.","PeriodicalId":432115,"journal":{"name":"Photonics West - Optoelectronic Materials and Devices","volume":"9368 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130394610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Schleunitz, J. Klein, R. Houbertz, M. Vogler, G. Gruetzner
{"title":"Towards high precision manufacturing of 3D optical components using UV-curable hybrid polymers","authors":"A. Schleunitz, J. Klein, R. Houbertz, M. Vogler, G. Gruetzner","doi":"10.1117/12.2076252","DOIUrl":"https://doi.org/10.1117/12.2076252","url":null,"abstract":"Hybrid polymers have been already widely applied in photonic applications to manufacture microlenses or 2D and 3D waveguides. Thus, they are promising candidates to manufacture optical systems down to the chip level. A brief review on hybrid polymers consisting of both inorganic and organic functional units and thus combine superior material properties in just one material class will be given in this report. The material properties, which can be adjusted to the application in wide ranges enable to fabricate micro-optical elements (e.g. microlenses) using replication techniques such as UV-assisted replication or nano-imprint lithography. Aside of their applicability in 2D, emphasis will be in particular on the evaluation of hybrid polymer materials for two-photon absorption lithography, which is employed to directly manufacture sophisticated 3D photonic structures impossible to be generated with conventional 2D techniques.","PeriodicalId":432115,"journal":{"name":"Photonics West - Optoelectronic Materials and Devices","volume":"9368 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131265430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}