BIO IntegrationPub Date : 1900-01-01DOI: 10.15212/bioi-2022-0022
Chengxiao Zhang, Y. Mu, Ye Zhuo, Taihua Li, F. Jin, Chun-Zhin Jin, Hyung-Gwan Lee, Long Jin
{"title":"Utilizing Bacteria-Derived Components for Cancer Immunotherapy","authors":"Chengxiao Zhang, Y. Mu, Ye Zhuo, Taihua Li, F. Jin, Chun-Zhin Jin, Hyung-Gwan Lee, Long Jin","doi":"10.15212/bioi-2022-0022","DOIUrl":"https://doi.org/10.15212/bioi-2022-0022","url":null,"abstract":"\u0000 Bacteria-related cancer immunotherapy, because of its mechanisms and useful applications in the induction of anti-tumor immunity, has gained substantial attention in recent decades. Bacteria can enable targeting of tumors, and specifically can colonize the core tumor area. Because they contain many pathogen-associated molecular patterns—which efficiently stimulate immune cells, even within microenvironments that suppress anti-tumor immunity—bacteria boost immunological recognition leading to the destruction of malignant cells. This Editorial highlights various bacteria with immunotherapeutic effects and their by-products used as immunotherapeutics.\u0000","PeriodicalId":431549,"journal":{"name":"BIO Integration","volume":"66 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124919088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BIO IntegrationPub Date : 1900-01-01DOI: 10.15212/bioi-2021-0011
Xiaoen Shi, Xu Zhang, Xinlu Zhang, Hai-bing Guo, Sheng Wang
{"title":"The Integration of Reactive Oxygen Species Generation and Prodrug Activation for Cancer Therapy","authors":"Xiaoen Shi, Xu Zhang, Xinlu Zhang, Hai-bing Guo, Sheng Wang","doi":"10.15212/bioi-2021-0011","DOIUrl":"https://doi.org/10.15212/bioi-2021-0011","url":null,"abstract":"\u0000 The combination of chemotherapeutic drugs and reactive oxygen species (ROS) can improve cancer treatment outcome. Many ROS-generation strategies can specifically consume tumor-inherent oxygen and generate ROS, resulting in amplified ROS level and aggravated hypoxia. Therefore, the ROS generation strategy can integrate with prodrug activation strategy to realize synergetic therapy. In recent years, stimuli-responsive nanomedicines have been developed to realize the integration of ROS generation and prodrug activation. Triggered by a stimulus, nanomedicines can generate ROS at the tumor site, which can further activate the release of active drugs. In this review, we will summarize the latest progress of these nanomedicines and discuss the perspectives and challenges.\u0000","PeriodicalId":431549,"journal":{"name":"BIO Integration","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125145964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BIO IntegrationPub Date : 1900-01-01DOI: 10.15212/bioi-2023-0004
Jean de Bruin Jordaan, Ken J. Nixon, Craig S. Carlson, M. Postema
{"title":"First experiments with carbon black pigment dispersion acting as a Janus ultrasound contrast agent","authors":"Jean de Bruin Jordaan, Ken J. Nixon, Craig S. Carlson, M. Postema","doi":"10.15212/bioi-2023-0004","DOIUrl":"https://doi.org/10.15212/bioi-2023-0004","url":null,"abstract":"\u0000 Background: Theranostic ultrasound contrast agents comprise a therapeutic component whose controlled release is triggered by an ultrasound pulse. However, once the therapeutic component has been released from an ultrasound contrast agent microbubble, its intended uptake cannot be monitored, as its acoustically active host has been destroyed. Acoustic Janus particles, whose hydrophobic and hydrophilic properties depend on the external acoustic regime, are of potential use as contrast agents and drug-delivery tracers. The purpose of this study was to evaluate the hypothesis that submicron particles with Janus properties may act as ultrasound contrast agents whose hydrophobicity changes over time.Methods: Fifty samples of carbon black were subjected to 5-minute sonication with pulses with a center frequency of 10 MHz and a 1% duty cycle, after which the optical absorption coefficients were measured in n-octanol and water. These coefficients were compared with those of unsonicated samples.Results: Our preliminary results show that the difference between the linear absorption coefficients of sonicated and unsonicated samples was Δα = 80 ± 13 m−1 immediately after sonication, indicating that the carbon black particles were less hydrophobic after sonication than prior to it. Forty-eight hours after sonication, the difference in linear optical absorption coefficients had lessened to Δα = 16 ± 9 m−1, indicating that the carbon black particles had become more hydrophobic over time, but not equal to the hydrophobicity situation prior to sonication.Conclusion: The experiments confirmed that submicron carbon black particles have acoustic Janus properties.\u0000","PeriodicalId":431549,"journal":{"name":"BIO Integration","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126821562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BIO IntegrationPub Date : 1900-01-01DOI: 10.15212/bioi-2022-0009
Eric Tzyy Jiann Chong, Jun Wei Ng, P. Lee
{"title":"Classification and Medical Applications of Biomaterials–A Mini Review","authors":"Eric Tzyy Jiann Chong, Jun Wei Ng, P. Lee","doi":"10.15212/bioi-2022-0009","DOIUrl":"https://doi.org/10.15212/bioi-2022-0009","url":null,"abstract":"\u0000 Biomaterials are natural, synthetic, or hybrid materials, which are used in medical devices or implants that are placed in contact with the human biological system to compensate for or restore diminished functions of the body. The field of biomaterials has rapidly developed to meet the ever-expanding needs in healthcare and medicine practices. Advancements in science and technology have enabled the fabrication and reengineering of biomaterials into useful medical devices or implants, such as heart valves, bone plates, hip joints, and cardiac pacemakers. Because biomaterials are placed in continuous close contact with the recipient’s body fluids or tissues, the classification of available biomaterials is crucial for selecting safer and highly biocompatible materials. This review focuses on biomaterial classification, namely bioceramic, polymeric, and metallic biomaterials. Their medical applications, advantages, and disadvantages are discussed. Current trends in biomaterials involved in disease treatments, such as controlled drug delivery and cancer therapy, are additionally explored.\u0000","PeriodicalId":431549,"journal":{"name":"BIO Integration","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134600913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BIO IntegrationPub Date : 1900-01-01DOI: 10.15212/bioi-2023-0002
Zhiyi Chen
{"title":"Integration in Bioscience: Dynamic, Inclusive, and Full of Possibility","authors":"Zhiyi Chen","doi":"10.15212/bioi-2023-0002","DOIUrl":"https://doi.org/10.15212/bioi-2023-0002","url":null,"abstract":"<jats:p>\u0000 \u0000 </jats:p>","PeriodicalId":431549,"journal":{"name":"BIO Integration","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115334160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BIO IntegrationPub Date : 1900-01-01DOI: 10.15212/bioi-2022-0016
Gan Lin, Huirong Lin, Zhen Yuan, Gang Liu
{"title":"In vivo Iron-Based Coordination Assembly for Disease Diagnosis and Treatment","authors":"Gan Lin, Huirong Lin, Zhen Yuan, Gang Liu","doi":"10.15212/bioi-2022-0016","DOIUrl":"https://doi.org/10.15212/bioi-2022-0016","url":null,"abstract":"\u0000 Advances in in vivo iron-based coordination assembly have enabled the simultaneous detection and treatment of iron-overload disorders. Specific interactions between local FeIII and organic ligands (e.g., indocyanine green and lecithin) facilitate magnetic resonance imaging with enhanced sensitivity and photoacoustic imaging with high contrast, thus overcoming the longstanding limitations of traditional iron quantification approaches. Moreover, enhanced iron depletion can also be achieved in murine genetic models of iron-overload disorders. These advances provide great promise in interdisciplinary leveraging of biology, medicine and materials science to design nanomedicines for addressing unmet clinical needs.\u0000","PeriodicalId":431549,"journal":{"name":"BIO Integration","volume":"77 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116207218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Morphological Evaluation of Mitral Valve Based on Three-dimensional Printing Models: Potential Implication for Mitral Valve Repair","authors":"Yuan-ting Yang, Hao Wang, Hong-ning Song, Yugang Hu, Qincheng Gong, Ye Xiong, Junbi Liu, Wei Ren, Qing Zhou","doi":"10.15212/bioi-2021-0017","DOIUrl":"https://doi.org/10.15212/bioi-2021-0017","url":null,"abstract":"\u0000 Objective: This study aimed to analyze the morphological characteristics of rheumatic (RMVD) and degenerative mitral valve diseases (DMVD) based on three-dimensional (3D) printing model before and after surgery and to explore the potential implication of the 3D printing model for mitral valve (MV) repair.Methods: 3D transesophageal echocardiography (TEE) data of the MV were acquired in 45 subjects (15 with RMVD, 15 with DMVD, and 15 with normal MV anatomy). 3D printing models of the MV were constructed by creating molds to be printed with water-soluble polyvinyl alcohol, then filled with room temperature vulcanizing silicone. The parameters of the annulus and leaflet of the MV were acquired and analyzed using the 3D printing model. Mitral valve repair was simulated on 3D printing models of 10 subjects and compared with the actual operation performed on patients. The effects of surgery were assessed by evaluating the changes in coaptation length (CL) and the annular height to commissural width ratio (AHCWR) before and after MV repairs. The correlations of the grade of mitral regurgitation with CL and AHCWR were analyzed.Results: 3D silicone MV models were all successfully constructed based on 3D TEE data. Compared with the normal groups, the mitral annulus size in the RMVD groups showed no significant differences. In contrast, mitral annulus in DMVD groups was dilated and flattened with diameters of anteroposterior, anterolateral-posteromedial, commissural width, annular circumferences, and area increased. Mitral repair was successfully simulated on 10 models with significant increase in leaflet coaptation area both in vivo and in vitro. Good agreement was observed in CL and AHCWR after surgery in the 3D printing model compared with real surgery on the patient valve. The grade of mitral regurgitation correlated inversely with CL (r = –0.87, P < 0.01) and AHCWR (r = –0.79, P < 0.01). Mitral valve repair was performed twice in one model to assess which provided a better outcome.Conclusions: 3D printing models of the MV based on 3D TEE data could be used in morphological analysis of the MV before and after surgery in RMVD and DMVD. Surgery simulation on 3D printing models could provide valuable information concerning morphological changes after surgery, with are closely associated with clinical outcomes.\u0000","PeriodicalId":431549,"journal":{"name":"BIO Integration","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123873180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BIO IntegrationPub Date : 1900-01-01DOI: 10.15212/bioi-2020-0048
Qiu Meiyu, Liping Pei
{"title":"CRISPR/Cas-based Diagnostics and Gene Therapy","authors":"Qiu Meiyu, Liping Pei","doi":"10.15212/bioi-2020-0048","DOIUrl":"https://doi.org/10.15212/bioi-2020-0048","url":null,"abstract":"\u0000 Clustered regularly interspaced short palindromic repeats (CRISPR) technology, an easy, rapid, cost-effective, and precise gene-editing technique, has revolutionized diagnostics and gene therapy. Fast and accurate diagnosis of diseases is essential for point-of-care-testing (POCT) and specialized medical institutes. The CRISPR-associated (Cas) proteins system shed light on the new diagnostics methods at point-of-care (POC) owning to its advantages. In addition, CRISPR/Cas-based gene-editing technology has led to various breakthroughs in gene therapy. It has been employed in clinical trials for a variety of untreatable diseases, including cancer, blood disorders, and other syndromes. Currently, the clinical application of CRISPR/Cas has been mainly focused on ex vivo therapies. Recently, tremendous efforts have been made in the development of ex vivo gene therapy based on CRISPR-Cas9. Despite these efforts, in vivo CRISPR/Cas gene therapy is only in its initial stage. Here, we review the milestones of CRISPR/Cas technologies that advanced the field of diagnostics and gene therapy. We also highlight the recent advances of diagnostics and gene therapy based on CRISPR/Cas technology. In the last section, we discuss the strength and significant challenges of the CRISPR/Cas technology for its future clinical usage in diagnosis and gene therapy.\u0000","PeriodicalId":431549,"journal":{"name":"BIO Integration","volume":"119 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124581935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BIO IntegrationPub Date : 1900-01-01DOI: 10.15212/bioi-2022-0012
Phei Er Saw
{"title":"Voice series: Interview with Dr. Doris Di, University of Hawaii at Manoa; frontier in COVID-19 detection from wastewater treatment","authors":"Phei Er Saw","doi":"10.15212/bioi-2022-0012","DOIUrl":"https://doi.org/10.15212/bioi-2022-0012","url":null,"abstract":"<jats:p>\u0000 \u0000 </jats:p>","PeriodicalId":431549,"journal":{"name":"BIO Integration","volume":"47 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116387712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}