{"title":"CRISPR/Cas-based Diagnostics and Gene Therapy","authors":"Qiu Meiyu, Liping Pei","doi":"10.15212/bioi-2020-0048","DOIUrl":null,"url":null,"abstract":"\n Clustered regularly interspaced short palindromic repeats (CRISPR) technology, an easy, rapid, cost-effective, and precise gene-editing technique, has revolutionized diagnostics and gene therapy. Fast and accurate diagnosis of diseases is essential for point-of-care-testing (POCT) and specialized medical institutes. The CRISPR-associated (Cas) proteins system shed light on the new diagnostics methods at point-of-care (POC) owning to its advantages. In addition, CRISPR/Cas-based gene-editing technology has led to various breakthroughs in gene therapy. It has been employed in clinical trials for a variety of untreatable diseases, including cancer, blood disorders, and other syndromes. Currently, the clinical application of CRISPR/Cas has been mainly focused on ex vivo therapies. Recently, tremendous efforts have been made in the development of ex vivo gene therapy based on CRISPR-Cas9. Despite these efforts, in vivo CRISPR/Cas gene therapy is only in its initial stage. Here, we review the milestones of CRISPR/Cas technologies that advanced the field of diagnostics and gene therapy. We also highlight the recent advances of diagnostics and gene therapy based on CRISPR/Cas technology. In the last section, we discuss the strength and significant challenges of the CRISPR/Cas technology for its future clinical usage in diagnosis and gene therapy.\n","PeriodicalId":431549,"journal":{"name":"BIO Integration","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BIO Integration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15212/bioi-2020-0048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) technology, an easy, rapid, cost-effective, and precise gene-editing technique, has revolutionized diagnostics and gene therapy. Fast and accurate diagnosis of diseases is essential for point-of-care-testing (POCT) and specialized medical institutes. The CRISPR-associated (Cas) proteins system shed light on the new diagnostics methods at point-of-care (POC) owning to its advantages. In addition, CRISPR/Cas-based gene-editing technology has led to various breakthroughs in gene therapy. It has been employed in clinical trials for a variety of untreatable diseases, including cancer, blood disorders, and other syndromes. Currently, the clinical application of CRISPR/Cas has been mainly focused on ex vivo therapies. Recently, tremendous efforts have been made in the development of ex vivo gene therapy based on CRISPR-Cas9. Despite these efforts, in vivo CRISPR/Cas gene therapy is only in its initial stage. Here, we review the milestones of CRISPR/Cas technologies that advanced the field of diagnostics and gene therapy. We also highlight the recent advances of diagnostics and gene therapy based on CRISPR/Cas technology. In the last section, we discuss the strength and significant challenges of the CRISPR/Cas technology for its future clinical usage in diagnosis and gene therapy.