{"title":"Groundwater sustainability in the Friuli Plain","authors":"Luca Zini, Chiara Calligaris, Francesco Treu, Enrico Zavagno, Daniela Iervolino, Federica Lippi","doi":"10.7343/as-2023-713","DOIUrl":"https://doi.org/10.7343/as-2023-713","url":null,"abstract":"Groundwater resources in the Friuli Venezia Giulia (FVG) Region (northeast Italy) are an important natural wealth in terms of quantity, quality and ease of supply. This optimal condition, however, has long believed that it allowed an irrational and uncontrolled exploitation that inevitably produced tangible consequences on the water resources availability.The goal of the present research is the evaluation of the sustainable use of the groundwater in the Friuli Venezia Giulia Region aimed at providing guide-lines for its rational use. The study area belongs to the hydrogeological basin of the Friuli Plain and includes part of Veneto Region and Slovenia. The plain area is divided in two parts: the High Plain (HP) characterized by a phreatic aquifer and the Low Plain (LP) where eleven confined aquifer systems were identified. The two physiographic zones are separated by the spring belt. In order to evaluate the groundwater avaliability, a 3D model of the Low Friuli Plain aquifer systems was realized using Rockworks R14 software, starting from 603 lithostratigraphic wells data. Isobath and isopach maps were elaborated using kriging geostatistical method. Precipitation, evapotranspiration, runoff and infiltration were calculated to evaluate the inflow and outflow groundwater budget terms (109 rainfall and 46 thermometric stations, time series 1979-2008). To better define the river influences and the outflows at sea, a series of recent surveys on river discharges and surface withdrawals were considered. To obtain the water-budget in non-natural conditions, as the currents, were taken into account the groundwater withdrawals that were evaluated for each type of use and for each aquifer systems, starting from 2 geodatabases: one for the domestic uses (50101 estimated wells) and one for the industrial, agricultural, fish breeding, hygienic, geothermal and other minor uses (7594 wells). Well withdrawals amount were evaluated on annual base for recent periods and expressed as m3/s. The total current estimated groundwater withdrawals reach 62.4 m3/s, of which 41.1 m3/s from the confined aquifer systems in the LP area. More than 52% of the withdrawals are due to the domestic wells. For the water-budget, the studied territory was considered a “semi-closed box” in which groundwater sharings with the neighboring areas are not relevant and where the recharge is mainly due to the influent character of the river, infiltration, rainfall and irrigation practices. As result, the waterbudget for the confined LP is equal to +2.6 m3/s representing the accuracy, fairly acceptable for the scale of the research. Withdrawal entity, spring belt discharge, phreatic levels and confined aquifer’s pressure are closely interdependent and in dynamic equilibrium. The sustainability comes from the consistency and ratio between recharge and withdrawals. The confined aquifer withdrawals in the LP represent the 23.1% of the groundwater recharge coming from the HP and the 30.6% of the sp","PeriodicalId":42515,"journal":{"name":"Acque Sotterranee-Italian Journal of Groundwater","volume":"40 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135472714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Piero Mori, James Baldock, Andrea Gigliuto, Mattia Cappelletti Zaffaroni, Cecilia Marino
{"title":"Remediation of chlorinated solvents with Electrical Resistance Heating (ERH) at an active industrial site in Italy","authors":"Piero Mori, James Baldock, Andrea Gigliuto, Mattia Cappelletti Zaffaroni, Cecilia Marino","doi":"10.7343/as-2023-674","DOIUrl":"https://doi.org/10.7343/as-2023-674","url":null,"abstract":"Italian legislation defines stringent groundwater chemical quality criteria, to be applied at a site’s downgradient property boundary, irrespective of whether the underlying aquifer is, or could be, used for water resource purposes. In some scenarios, the regulatory authorities may identify less stringent standards, but this rarely occurs. This means that many sites with groundwater contamination are managed using hydraulic barriers, as source zone remediation may not achieve the stringent groundwater standards required due to technology limits or time constraints; therefore, the parties responsible for contamination often decide to continue to operate these hydraulic barriers indefinitely. This article describes the first application in Italy of source treatment using Electrical Resistance Heating (ERH), a remediation technology capable of removing a large percentage of contaminant mass, at a site where a hydraulic barrier is operating within a low yielding aquifer that is not used for water supply. The implementation of this technology was possible since the source zone was far from the downgradient site boundary, thus making achievement of the stringent quality standards at the boundary possible within a reasonable timeframe. The ERH system recovered of about 600 kg of contaminants within a timeframe of 8 months and achieved a reduction of contaminant concentrations in the most impacted areas greater than 90%. This article also emphasizes that, in similar low yielding aquifers, setting less stringent groundwater standards at the site boundary whilst still protecting downgradient receptors may promote more widespread implementation of source remediation activities in Italy.","PeriodicalId":42515,"journal":{"name":"Acque Sotterranee-Italian Journal of Groundwater","volume":"78 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135472720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maria Chiara Lippera, Ulrike Werban, Thomas Vienken
{"title":"Application of physical clogging models to Managed Aquifer Recharge: a review of modelling approaches from engineering fields","authors":"Maria Chiara Lippera, Ulrike Werban, Thomas Vienken","doi":"10.7343/as-2023-681","DOIUrl":"https://doi.org/10.7343/as-2023-681","url":null,"abstract":"Managed Aquifer Recharge (MAR) sites suffer from the long-lasting problem of clogging. The causes of clogging are physical, biological, chemical and mechanical processes and their complex interaction, with physical clogging being recognised as the predominant process. The intrusion and deposition of particles during water recharge affect the hydraulic properties of the infiltration surface, resulting in a decline in the infiltration capacity of the site over the operating years. Cleaning operations are necessary to restore the original infiltration rates. For this purpose, assessing the risk of clogging can determine the site’s vulnerability and improve the scheme’s design. Numerical models are essential to replicate physical clogging processes and predict the decline in infiltration rates. So far, predictive tools for physical clogging assessment have been missing in MAR literature. Hence, the purpose of this study is to analyse and reorganise physical clogging models from applied engineering fields dealing with water infiltration in natural heterogeneous systems. The modelling approaches are illustrated, starting from the main assumptions and conceptualisation of the soil volume and intruding particles. The individual processes are untangled from the multiple studies and reorganised in a systematic comparison of mathematical equations relevant to MAR applications. The numerical models’ predictive power is evaluated for transferability, following limitations and recommendations for a process-based model applicable to surface spreading schemes. Finally, perspectives are given for clogging risk assessment at MAR sites from modelling and site characterisation. The predictive tool could assist decision-makers in planning the MAR site by implementing cost-effective strategies to lower the risk of physical clogging.","PeriodicalId":42515,"journal":{"name":"Acque Sotterranee-Italian Journal of Groundwater","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135472717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Samir Hani, Fayçal Toumi, N. Bougherira, I. Shahrour, A. Hani
{"title":"Numerical simulation of seawater intrusion in the lower Seybouse aquifer system, Algeria","authors":"Samir Hani, Fayçal Toumi, N. Bougherira, I. Shahrour, A. Hani","doi":"10.7343/as-2023-635","DOIUrl":"https://doi.org/10.7343/as-2023-635","url":null,"abstract":"Seawater intrusion represents a high risk for the water supply, the agriculture and industry activities in the lower Seybouse region of North-Eastern Algeria. In order to analyze this risk, a three-dimensional model was developed using the MODFLOW and MT3DMS codes to predict seawater intrusion in the coastal aquifer. The application of this model indicates that the groundwater withdrawals result in a continuous decrease of the water level and in an increase of chloride concentration. Moreover, the salt front could progress by 300 to 2500 m in the land. These results show the necessity of adequate measures for the protection of the aquifer. Numerical predictions for 2045, considering an increase of groundwater withdrawals by 20%, show a fairly significant decrease in water levels, up to -6 m with respect to the mean sea level, and an increase of Cl- concentrations up to about 10 km inland.","PeriodicalId":42515,"journal":{"name":"Acque Sotterranee-Italian Journal of Groundwater","volume":"22 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91152425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hydrogeology in Algeria - 2nd section","authors":"Fares Kessasra, N. Mezerreg","doi":"10.7343/as-2023-696","DOIUrl":"https://doi.org/10.7343/as-2023-696","url":null,"abstract":"Groundwater depletion is the natural consequence of withdrawing water from an aquifer at a higher rate than recharge. If groundwater abstraction exceeds groundwater recharge for extensive areas and long time, overexploitation or persistent groundwater depletion can occur [...].","PeriodicalId":42515,"journal":{"name":"Acque Sotterranee-Italian Journal of Groundwater","volume":"18 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85977653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Marie Sklovdoska Curie Fellowships: an international opportunity for early career hydrogeologists]","authors":"S. Viaroli, D. Di Curzio, Eloisa Di Sipio, V. Re","doi":"10.7343/as-2023-663","DOIUrl":"https://doi.org/10.7343/as-2023-663","url":null,"abstract":"[Article in Italian]","PeriodicalId":42515,"journal":{"name":"Acque Sotterranee-Italian Journal of Groundwater","volume":"30 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81340411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Valentino Colantoni, Daniela Delogu, R. M. Gafà, F. La Vigna, L. Martarelli, G. Monti, A. Silvi
{"title":"[The Italian Database of Shallow Boreholes in compliance with the Governmental Law N. 464/84, an operational tool available by webservice for researchers, professionals and citizens]","authors":"Valentino Colantoni, Daniela Delogu, R. M. Gafà, F. La Vigna, L. Martarelli, G. Monti, A. Silvi","doi":"10.7343/as-2023-690","DOIUrl":"https://doi.org/10.7343/as-2023-690","url":null,"abstract":"[Article in Italian]","PeriodicalId":42515,"journal":{"name":"Acque Sotterranee-Italian Journal of Groundwater","volume":"2014 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88375692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hydrogeochemical evolution and mineralization origin in a semi-arid shallow aquifer: a case study of the Barika area in northeast Algeria","authors":"Assia Tafrount, T. Drias, D. Chenaf, Brinis Nafaa","doi":"10.7343/as-2023-624","DOIUrl":"https://doi.org/10.7343/as-2023-624","url":null,"abstract":"Most Middle Eastern and North African regions are characterized by an arid and semi-arid climate. As such, the drinking water supply and management have become a challenging task for local and regional authorities. The Mio-Plio Quaternary aquifer of the Barika area is the only drinking and irrigation water reservoir in the region. The objective of this paper is to identify the origin and evolution process of the groundwater mineralization of this aquifer using major elements as indicators. To achieve this objective water samples were collected, from several boreholes drilled in the aquifer, in June 2018 and March 2019, and subsequently analyzed. The results obtained in terms of Gibbs plot, Piper, chemical correlation, and statistical analysis of chemical data identified the origins of groundwater mineralization. The dissolution of evaporated minerals, precipitation of carbonates, evapotranspiration, and ion exchange reactions have been identified as the primary processes of mineralization. The results of the physicochemical analysis showed that these waters consisted mainly of chloride, calcium sulfate, and magnesium facies types with a slight change of facies in some boreholes during the two sampling periods. This is due to the interactions with the-aquifer geology and to the water scarcity caused by climate change.","PeriodicalId":42515,"journal":{"name":"Acque Sotterranee-Italian Journal of Groundwater","volume":"1 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90906541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Khellaf, Mohamed-Amine Bechkit, W. Chettah, El Hadj Youcef Brahim, Imane Dib
{"title":"Feasibility study for the southern extension of Mila town (northeast of Algeria) for urbanization purposes: a geotechnical and hydrogeophysical approach","authors":"K. Khellaf, Mohamed-Amine Bechkit, W. Chettah, El Hadj Youcef Brahim, Imane Dib","doi":"10.7343/as-2023-630","DOIUrl":"https://doi.org/10.7343/as-2023-630","url":null,"abstract":"The population of Mila is increasing and local authorities are looking for new lands to develop the town and provide housing. However, the soil of these lands is unstable and requires detailed studies to serve as a foundation. This work presents the geotechnical and the geophysical characteristics of the Marechau soils, which forms the southeast extension of the Mila town. To provide an idea about the soil condition, to choose the type of adequate constructions and to make decision for building it, we adopted a geotechnical approach, where we analysed the soils by carrying out core drilling tests, dynamic penetration tests and the laboratory tests. We also, employed the geophysical approach in determining the electrical resistivity so as to map the depth of bedrock roof. Furthermore, we conducted a comprehensive hydrogeological study, monitoring precipitation and the piezometric level of the aquifer over a period of 200 days, and determined the flow direction. The core drilling test results indicate a clayey soil with limestone blocks. The dynamic penetration test show two categories of soil. The laboratory tests show that the materials analysed are very plastic, over-consolidated and medium to very compressible. They have a medium to high swelling potential and medium amount of aggressiveness to concrete. Besides, the tomography results also showed a single layer land (clay) with massive rocks embedded in it. The piezometric monitoring reveals the presence of two aquifer systems. The first is superficial and the second is deep. They don’t recharge directly after the rain falls and the groundwater flows in the direction of the slope. All the results indicate that solutions must be found for soil movements in the area under study before urbanization takes place. The combination of these results with the location, land morphology, tectonic activity, and seismotectonic aspects suggest that the area presents a high risk, and its urbanization requires rigorous and mandatory precautionary measures.","PeriodicalId":42515,"journal":{"name":"Acque Sotterranee-Italian Journal of Groundwater","volume":"20 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86267626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}