{"title":"Magnesium and groundwater flow relationship in karst aquifers: a tool for exploitation management of springs","authors":"Francesco Maria De Filippi, Giuseppe Sappa","doi":"10.7343/as-2022-683","DOIUrl":"https://doi.org/10.7343/as-2022-683","url":null,"abstract":"Karst aquifers are characterized by different types of groundwater flow, related to different types of permeability due to the simultaneous presence of matrix, fractures and conduits. The presence of a well-developed karst conduit system leads to a rapid circulation of groundwater within the aquifer and a pulse-type response of the spring flow to the rainfall inputs, with a potential fast transport of contaminants from the hydrogeological basin surface to the discharge zones. Supported by hydro chemical analyses of spring water samples and single discharge measurements, it was possible to develop specific mass balance models, correlating ion content to spring flowrates. Specifically, Mg2+ content revealed a reliable application for spring baseflow separation in karst settings. Once the local model has been set, its conservative behaviour, in mostly limestone-dominant aquifers, allows using Mg2+ as a natural tracer of groundwater flow, distinguishing conduit flow (overflow) and diffuse flow (baseflow) occurrence in the spring outlet, without additional discharge measurements. In karst settings, the difficulty in continuously monitoring the spring discharge values makes this application interesting for exploitation management. This study shows the results obtained for two springs located in Central Italy, confirming that monitoring groundwater quality in karst environments is often the key for successfully characterizing springs and assessing the total yield when direct measurements are not available.","PeriodicalId":42515,"journal":{"name":"Acque Sotterranee-Italian Journal of Groundwater","volume":"11 7","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134954344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improved groundwater modeling by incorporating geological information from hydrogeological sections","authors":"Massimiliano Schiavo","doi":"10.7343/as-2022-692","DOIUrl":"https://doi.org/10.7343/as-2022-692","url":null,"abstract":"Geological cross-sections are usually employed in the hydrogeological model conceptualization, but their usage may not be easily exploited in subsequent modeling phases. The spatial distribution of geological facies along a geological section’s track may significantly vary when using random facies fields, and these may not be faithful to the original conceptualization described by the geological section. The present work offers a novel framework for improving available hydrogeological models using geological sections as a more quantitative source of information, hence by taking into account of information coming from a geological section. Then, this information given by the change in the distribution of porosities is transferred from the section’s track to surrounding locations through a proper kriging procedure upon a chosen Correlation Scale (R), which is exponentially correlated in space. This procedure is tested by using porosity distributions upon several R, associating a conductivity value with each porosity one through empirical formulations, and informing several numerical models related to a real case study (an aquifer in the province of Lecco, Northern Italy). The proposed procedure enables to significantly outperform the former calibrated numerical model. Best-calibrated models show that the convenient R could be from 2 to 5 kilometers long, consistent with the width of the alluvial and fluvioglacial floodplain that characterizes the aquifer under examination.","PeriodicalId":42515,"journal":{"name":"Acque Sotterranee-Italian Journal of Groundwater","volume":"11 26","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134954540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Different groundwater behaviour in deep karst boreholes: the case of Jadro spring basin (Dinaric karst, Croatia)","authors":"Ognjen Bonacci, Tanja Roje-Bonacci, Adrijana Vrsalović","doi":"10.7343/as-2022-682","DOIUrl":"https://doi.org/10.7343/as-2022-682","url":null,"abstract":"The paper analyzes the data of groundwater level (GWL), groundwater temperature (TW), and electrical conductivity (EC) measurements in three deep piezometers (B1, B2, B3) in the Jadro spring basin, taken from October 2010 to December 2021. The variation of these parameters is analyzed at different time scales: annually, monthly, daily (24 hours), and hourly. They are compared with the data of the same parameters measured at the Jadro Spring. The analysis of the maximum observed rise and fall rates of the GWL showed that the piezometers were drilled in very different karst environments. Piezometer B1 is located in a karst matrix where the water flows predominantly in a diffuse laminar (slow-flow) regime. Piezometers B2 and B3 are located in a fault line where numerous large karst underground formations occur and rapid turbulent water flow takes place. The mean annual flows of the Jadro Spring strongly depend on the mean annual GWL-s in each of the piezometers. For much of the year (about 99%), the GWL in all three piezometers is more than 210 m below the ground surface. As the measuring sensors are located near the bottom of the piezometers, the groundwater temperature is almost stagnant. It is always at 12.5 ºC in piezometer B1 and behaves almost identically in piezometer B3. Water temperature is the highest in piezometer B2 and hovers around the average value of 13.5 ºC. At the Jadro Spring, the average water temperature is 12.95 ºC. The electrical conductivity values are the highest in piezometers B2 and B3, with an average of around 0.5 mS/cm. They are lower in piezometer B1, where they range around an average value of 0.465 mS/cm, while at the Jadro Spring, they vary from 0.40 mS/cm to 0.48 mS/cm, with an average value of 0.44 mS/cm. A distinct seasonal pattern in groundwater level behavior is evident across all piezometers. However, no discernible upward or downward trend is observed.","PeriodicalId":42515,"journal":{"name":"Acque Sotterranee-Italian Journal of Groundwater","volume":" 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135290936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Geothermal heat pump systems: what criteria and parameters in future legislation]","authors":"Paolo Cerutti","doi":"10.7343/as-2023-719","DOIUrl":"https://doi.org/10.7343/as-2023-719","url":null,"abstract":"[Article in Italian]","PeriodicalId":42515,"journal":{"name":"Acque Sotterranee-Italian Journal of Groundwater","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135243177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Geothermal heat pump systems for underground geoexchange: a ripe opportunity for the present, a prospect to be developed for the future]","authors":"Paolo Cerutti","doi":"10.7343/as-2023-720","DOIUrl":"https://doi.org/10.7343/as-2023-720","url":null,"abstract":"[Article in Italian]","PeriodicalId":42515,"journal":{"name":"Acque Sotterranee-Italian Journal of Groundwater","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135243439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The many faces of hydrogeology","authors":"Rudy Rossetto","doi":"10.7343/as-2023-721","DOIUrl":"https://doi.org/10.7343/as-2023-721","url":null,"abstract":"Not available","PeriodicalId":42515,"journal":{"name":"Acque Sotterranee-Italian Journal of Groundwater","volume":"39 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135200092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Assessment of Metalaxyl migration through vadose zone of alluvial sandy soil using column experiment and HYDRUS numerical modeling","authors":"Nilesh Kumar Meshram, Kalyan Adhikari, Rhitwik Chatterjee","doi":"10.7343/as-2023-634","DOIUrl":"https://doi.org/10.7343/as-2023-634","url":null,"abstract":"Contemporary research on pesticides/fungicides as potential sources of groundwater contamination, including their migration pathways, especially in the Western Bengal basin (WBB), is scarce. The present research intends to study the vulnerability of groundwater towards pollution from metalaxyl. Metalaxyl is a fungicide added anthropogenically to the sandy soil of WBB for the cultivation of crops like tomatoes, potatoes and mustard. The study explores the mechanics of metalaxyl adsorption in soil and its migration to the associated groundwater system. Chemical analyses show high concentrations of metalaxyl within groundwater (472.9 μg/L, maximum amount) from the study area (Nadia district of WBB). The groundwater ubiquity score of metalaxyl (4.6) depicts that it is very much prone to leach through the sandy soils of WBB to the underlying groundwater system. The results of column leaching experiments and their congruence to the findings of numerical modelling study using HYDRUS software confirm the fact. The adsorptive resilience of the studied soils towards metalaxyl is insignificant (soils of North Chandmari (S1) =0.1087 mg/g, Ghoragacha (S2) =0.21 mg/g, and Khaldarpara (S3) =1.771 mg/g). However, the presence of excess iron concentration may enhance the adsorptive capacity of the soil toward Metalaxyl, thereby limiting its migration toward the zone of saturation.","PeriodicalId":42515,"journal":{"name":"Acque Sotterranee-Italian Journal of Groundwater","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135470971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sobhy R. Emara, Asaad M. Armanuos, Tamer A. Gado, Bakenaz A. Zeidan
{"title":"Verification of experimental saltwater intrusion interface in unconfined coastal aquifers using numerical and analytical solutions","authors":"Sobhy R. Emara, Asaad M. Armanuos, Tamer A. Gado, Bakenaz A. Zeidan","doi":"10.7343/as-2023-668","DOIUrl":"https://doi.org/10.7343/as-2023-668","url":null,"abstract":"Saltwater intrusion (SWI) is a widespread environmental problem that poses a threat to coastal aquifers. To address this issue, this research employs both numerical and experimental methods to study saltwater intrusion under the impact of sea level rise and varying freshwater boundary conditions in two homogeneous aquifers. The study compares transient numerical groundwater heads and salt concentrations to experimental results under receding-front and advancing front conditions. In the low permeability aquifer, the root mean square error is 0.33 cm and the R2 is greater than 0.9817. Similarly, in the high permeability aquifer, the root mean square error is 0.92 cm and the R2 is greater than 0.9335. The study also compares the results of ten experimental tests for steady-state saltwater intrusion wedge and toe length with seven different analytical solutions. The experimental results are then compared to these analytical solutions to find the most suitable equation. The Rumer and Harleman equation shows good agreement with experimental saltwater intrusion wedge, while the Anderson equation is a good fit for saltwater intrusion toe length. Overall, this research provides valuable insights into saltwater intrusion in coastal aquifers, and the findings can be used to inform policies and management strategies to mitigate the negative impacts of saltwater intrusion. The investigation shed light on how inland water head and Sea Level Rise (SLR) affect SWI behavior.","PeriodicalId":42515,"journal":{"name":"Acque Sotterranee-Italian Journal of Groundwater","volume":"40 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135472707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abdelkader Otmane, Radia Gherissi, Kamila Baba-Hamed, Abderrazak Bouanani
{"title":"Qualitative evaluation of groundwater in terms of its suitability for drinking and irrigation. The case study of Sidi-Bel-Abbes alluvial aquifer (NW Algeria)","authors":"Abdelkader Otmane, Radia Gherissi, Kamila Baba-Hamed, Abderrazak Bouanani","doi":"10.7343/as-2023-669","DOIUrl":"https://doi.org/10.7343/as-2023-669","url":null,"abstract":"Sidi-Bel-Abbes province is a semi-arid area mainly used for agricultural activity in northwestern Algeria. Its groundwater resources are characterized by high salinity varying from one area to another. This work aims at improving our understanding of these waters, through hydrochemical classification, to define their chemical facies and monitor their spatial evolution. In addition, this groundwater’s quality is assessed regarding their suitability for drinking and irrigation. The obtained results showed that the groundwater of the Sidi-Bel-Abbes area is dominated by chlorides, particularly the chloride calcium and sodium facies. Indeed, the spatial distribution of the different chemical facies confirmed the contribution of adjacent hydrogeological units and the interaction between the groundwater and the Mekerra Wadi. In terms of suitability for drinking, the maximum chemical element concentration accepted by the Algerian legislation is exceeded in most samples, especially for nitrates, chlorides, sodium and calcium. The interpretation of Riverside and Wilcox diagram revealed that the alluvial groundwater of Sidi-Bel-Abbes is generally characterized by a high salinity with a low to medium alkalinity danger. Therefore, the quality of this water is medium to poor, suitable for irrigation, but under certain conditions. Also, the groundwater is unsuitable for sensitive plants because of its high chloride (Cl) ion content. Moreover, the results obtained indicate that the use of these waters in irrigation presents low sodium risks, and therefore are not likely to modify the structure of the soils in the Sidi-Bel-Abbes plain or reduce their permeability.","PeriodicalId":42515,"journal":{"name":"Acque Sotterranee-Italian Journal of Groundwater","volume":"37 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135470972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[A hole in the water]","authors":"Alessio Argentieri","doi":"10.7343/as-2023-714","DOIUrl":"https://doi.org/10.7343/as-2023-714","url":null,"abstract":"[In Italian]","PeriodicalId":42515,"journal":{"name":"Acque Sotterranee-Italian Journal of Groundwater","volume":"46 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135536075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}