Samir Hani, Fayçal Toumi, N. Bougherira, I. Shahrour, A. Hani
{"title":"Numerical simulation of seawater intrusion in the lower Seybouse aquifer system, Algeria","authors":"Samir Hani, Fayçal Toumi, N. Bougherira, I. Shahrour, A. Hani","doi":"10.7343/as-2023-635","DOIUrl":null,"url":null,"abstract":"Seawater intrusion represents a high risk for the water supply, the agriculture and industry activities in the lower Seybouse region of North-Eastern Algeria. In order to analyze this risk, a three-dimensional model was developed using the MODFLOW and MT3DMS codes to predict seawater intrusion in the coastal aquifer. The application of this model indicates that the groundwater withdrawals result in a continuous decrease of the water level and in an increase of chloride concentration. Moreover, the salt front could progress by 300 to 2500 m in the land. These results show the necessity of adequate measures for the protection of the aquifer. Numerical predictions for 2045, considering an increase of groundwater withdrawals by 20%, show a fairly significant decrease in water levels, up to -6 m with respect to the mean sea level, and an increase of Cl- concentrations up to about 10 km inland.","PeriodicalId":42515,"journal":{"name":"Acque Sotterranee-Italian Journal of Groundwater","volume":"22 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acque Sotterranee-Italian Journal of Groundwater","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7343/as-2023-635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
Seawater intrusion represents a high risk for the water supply, the agriculture and industry activities in the lower Seybouse region of North-Eastern Algeria. In order to analyze this risk, a three-dimensional model was developed using the MODFLOW and MT3DMS codes to predict seawater intrusion in the coastal aquifer. The application of this model indicates that the groundwater withdrawals result in a continuous decrease of the water level and in an increase of chloride concentration. Moreover, the salt front could progress by 300 to 2500 m in the land. These results show the necessity of adequate measures for the protection of the aquifer. Numerical predictions for 2045, considering an increase of groundwater withdrawals by 20%, show a fairly significant decrease in water levels, up to -6 m with respect to the mean sea level, and an increase of Cl- concentrations up to about 10 km inland.