ICT 2005. 24th International Conference on Thermoelectrics, 2005.最新文献

筛选
英文 中文
Developing PbTe-based superlattice structures with enhanced thermoelectric performance 开发热电性能增强的pbte基超晶格结构
ICT 2005. 24th International Conference on Thermoelectrics, 2005. Pub Date : 2005-06-19 DOI: 10.1109/ICT.2005.1519993
J. Caylor, K. Coonley, J. Stuart, S. Nangaoy, T. Colpitts, R. Venkatasubramanian
{"title":"Developing PbTe-based superlattice structures with enhanced thermoelectric performance","authors":"J. Caylor, K. Coonley, J. Stuart, S. Nangaoy, T. Colpitts, R. Venkatasubramanian","doi":"10.1109/ICT.2005.1519993","DOIUrl":"https://doi.org/10.1109/ICT.2005.1519993","url":null,"abstract":"The fabrication of n-type PbTe/PbTe/sub 0.75/Se/sub 0.25/ structures using a simple evaporation technique has yielded high-quality superlattice films, a significant reduction in lattice thermal conductivity and potentially enhanced thermoelectric device performance, compared to standard PbTeSe alloys. The room temperature lattice thermal conductivity of PbTeSe alloys have been reduced by a factor of two or more using PbTe/PbTeSe superlattices in the cross-plane direction. Using this advantage, we have begun characterizing the cross-plane ZT of PbTe/PbTeSe superlattice devices, including the development of appropriate Ohmic contacts for the PbTe-material system. We will discuss various device process technologies for improved Ohmic contacts. The room-temperature measurement of cross-plane figure-of-merit in n-type PbTe/PbTe/sub 0.75/Se/sub 0.25/ device structure by the transient method will be reported. Also, these results will be combined with temperature dependent measurements of in-plane resistivity and Seebeck coefficient to yield evidence of enhanced thermoelectric performance. The results from similar p-type films, as well as preliminary data on heteroepitaxial films grown on Bi/sub 2/Te/sub 3/ will be discussed.","PeriodicalId":422400,"journal":{"name":"ICT 2005. 24th International Conference on Thermoelectrics, 2005.","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2005-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123360516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Thermoelectric properties and phase stability of La/sub 10/S/sub 14/O La/sub 10/S/sub 14/O的热电性能和相稳定性
ICT 2005. 24th International Conference on Thermoelectrics, 2005. Pub Date : 2005-06-19 DOI: 10.1109/ICT.2005.1519917
M. Ohta, S. Hirai, H. Kato, H. Asahi
{"title":"Thermoelectric properties and phase stability of La/sub 10/S/sub 14/O","authors":"M. Ohta, S. Hirai, H. Kato, H. Asahi","doi":"10.1109/ICT.2005.1519917","DOIUrl":"https://doi.org/10.1109/ICT.2005.1519917","url":null,"abstract":"The electrical resistivity, thermopower, thermal conductivity measurements have been made on tetragonal La/sub 10/S/sub 14/O. The electrical resistivity was measured during heating and successive cooling through 300 and 1000 K to investigate the high-temperature phase stability. The measurements were carried out in the vacuum chamber pumped down to 1.0 Pa. The electrical properties of La/sub 10/S/sub 14/O are changed dramatically through heat treatment. As annealing time increases, the electrical resistivity increases abruptly and then decreases gradually. However, it seems that this phase can be stabilized by a small addition of Ti. In the electrical resistivity of La/sub 10/S/sub 14/O with Ti, the cooling curve agrees with heating curve. Moreover, the ZT value increases abruptly with increasing temperature, reaching a value of 0.18 at 1000 K. The improvement with respect to the thermoelectric properties of the La/sub 10/S/sub 14/O is realized by a small addition of Ti.","PeriodicalId":422400,"journal":{"name":"ICT 2005. 24th International Conference on Thermoelectrics, 2005.","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2005-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123642094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermoelectric properties of ZrNiSn based half Heusler compounds 基于ZrNiSn的半Heusler化合物的热电性质
ICT 2005. 24th International Conference on Thermoelectrics, 2005. Pub Date : 2005-06-19 DOI: 10.2320/MATERTRANS.47.1453
H. Muta, T. Yamaguchi, K. Kurosaki, S. Yamanaka
{"title":"Thermoelectric properties of ZrNiSn based half Heusler compounds","authors":"H. Muta, T. Yamaguchi, K. Kurosaki, S. Yamanaka","doi":"10.2320/MATERTRANS.47.1453","DOIUrl":"https://doi.org/10.2320/MATERTRANS.47.1453","url":null,"abstract":"The thermoelectric properties of titanium substituted ZrNiSn have been measured from room temperature to 1000 K. The samples were prepared by arc melting followed by spark plasma sintering (SPS) technique. High SPS temperature increased the homogeneity of titanium substituted sample, result at increase of the electrical conductivity without deterioration of the Seebeck coefficient. Zr/sub 0.7/Ti/sub 0.3/NiSn showed higher power factor than pure ZrNiSn, the value reached 4 mW/mK/sup 2/ at 700 K. The SPS temperature had little influence on the thermal conductivity. However, the titanium substituted sample decomposed upon annealing at high temperature. Thus appropriate heat and preparation treatment appeared to be necessary for the samples containing titanium. Highest ZT was obtained for Zr/sub 0.7/Ti/sub 0.3/NiSn, equal to 0.48 at 800 K.","PeriodicalId":422400,"journal":{"name":"ICT 2005. 24th International Conference on Thermoelectrics, 2005.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2005-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123732733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 56
Measurement of thermoelectric properties of individual bismuth telluride nanowires 单个碲化铋纳米线热电性能的测量
ICT 2005. 24th International Conference on Thermoelectrics, 2005. Pub Date : 2005-06-19 DOI: 10.1109/ICT.2005.1519876
Jianhua Zhou, Chuangui Jin, J. Seol, Xiaoguang Li, Lio Shi
{"title":"Measurement of thermoelectric properties of individual bismuth telluride nanowires","authors":"Jianhua Zhou, Chuangui Jin, J. Seol, Xiaoguang Li, Lio Shi","doi":"10.1109/ICT.2005.1519876","DOIUrl":"https://doi.org/10.1109/ICT.2005.1519876","url":null,"abstract":"We have measured the thermoelectric properties of electrochemically deposited bismuth telluride (Bi/sub x/Te/sub 1-x/) nanowires with different atomic ratio or x. In this paper, we report the measurement method and the results for an individual nanowire from a batch with x found to be about 0.54. The Seebeck coefficient of the nanowire was found to be -30 /spl mu/V/K at temperature 300 K. The obtained electrical conductivity of the nanowire showed unusually weak temperature dependence, and the value at 300 K was only 5.6% lower than that of bulk Bi/sub 0.485/Te/sub 0.515/ crystal. The thermal conductivity of the nanowires was found to be 44% lower than that of bulk Bi/sub 0.485/Te/sub 0.515/ crystals.","PeriodicalId":422400,"journal":{"name":"ICT 2005. 24th International Conference on Thermoelectrics, 2005.","volume":"110 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2005-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122601035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Galvanomagnetic properties of multicomponent solid solutions based on Bi and Sb chalcogenides 基于铋和锑硫属化合物的多组分固溶体的流磁学性质
ICT 2005. 24th International Conference on Thermoelectrics, 2005. Pub Date : 2005-06-19 DOI: 10.1109/ICT.2005.1519978
L. N. Lukyanova, V. Kutasov, V. Popov, P. Konstantinov
{"title":"Galvanomagnetic properties of multicomponent solid solutions based on Bi and Sb chalcogenides","authors":"L. N. Lukyanova, V. Kutasov, V. Popov, P. Konstantinov","doi":"10.1109/ICT.2005.1519978","DOIUrl":"https://doi.org/10.1109/ICT.2005.1519978","url":null,"abstract":"Galvanomagnetic properties of multicomponent solid solutions of n-Bi/sub 2-x/Sb/sub x/Te/sub 3-y-z/Se/sub y/S/sub z/ composition were studied in weak and intermediate magnetic fields. Components of the effective mass tensor m/sub i//m/sub j/ were determined in the framework of the many-valley energy spectrum model using the isotropic scattering mechanism for a variety of solid solution compositions and electron concentrations. The influence of constant-energy surface parameters on the solid solutions thermoelectric efficiency was analyzed.","PeriodicalId":422400,"journal":{"name":"ICT 2005. 24th International Conference on Thermoelectrics, 2005.","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2005-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130400851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Structural features and transport properties of iodine intercalated misfit layer [BiCaO/sub 2/]/sub 2/[CoO/sub 2/]/sub 1.69/ single crystals 碘嵌入错配层[BiCaO/sub 2/]/sub 2/[CoO/sub 2/]/sub 1.69/单晶的结构特征及输运性质
ICT 2005. 24th International Conference on Thermoelectrics, 2005. Pub Date : 2005-06-19 DOI: 10.1109/ICT.2005.1519878
E. Guilmeau, M. Pollet, D. Grebille, M. Hervieu, H. Muguerra, R. Cloots, M. Mikami, R. Funahashi
{"title":"Structural features and transport properties of iodine intercalated misfit layer [BiCaO/sub 2/]/sub 2/[CoO/sub 2/]/sub 1.69/ single crystals","authors":"E. Guilmeau, M. Pollet, D. Grebille, M. Hervieu, H. Muguerra, R. Cloots, M. Mikami, R. Funahashi","doi":"10.1109/ICT.2005.1519878","DOIUrl":"https://doi.org/10.1109/ICT.2005.1519878","url":null,"abstract":"The thermopower and the electrical resistivity of [BiCaO/sub 2/]/sub 2/[CoO/sub 2/]/sub 1.69/ and corresponding iodine intercalated single crystals have been measured. Upon intercalation, the thermopower is drastically decreased, indicating that there is a hole doping by charge transfer from the intercalated iodine layer to the hexagonal CoO/sub 2/ layer. The resistivity is increased due to stacking faults and disordered structures. Structural analyses confirmed the stacking scheme along the c direction, with the localisation of iodine between the [BiO] double layers. The effect of intercalation on the thermoelectric properties suggested discussions from the view point of hole doping and nano-block layer coupling effect.","PeriodicalId":422400,"journal":{"name":"ICT 2005. 24th International Conference on Thermoelectrics, 2005.","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2005-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133769116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermoelectric properties of sintered (Mn/sub y/Ni/sub 1-y/)/sub x/Fe/sub 3-x/O/sub 4/ 烧结(Mn/sub -y/ Ni/sub - 1-y/)/sub x/Fe/sub 3-x/O/sub 4/的热电性能
ICT 2005. 24th International Conference on Thermoelectrics, 2005. Pub Date : 2005-06-19 DOI: 10.1109/ICT.2005.1519884
N. Koseki, K. Machida, K. Yamamoto, Y. Oikawa, C. Kim, H. Ozaki
{"title":"Thermoelectric properties of sintered (Mn/sub y/Ni/sub 1-y/)/sub x/Fe/sub 3-x/O/sub 4/","authors":"N. Koseki, K. Machida, K. Yamamoto, Y. Oikawa, C. Kim, H. Ozaki","doi":"10.1109/ICT.2005.1519884","DOIUrl":"https://doi.org/10.1109/ICT.2005.1519884","url":null,"abstract":"Effects of Mn-Ni co-substitution were investigated on the thermoelectric properties of sintered magnetite (Fe/sub 3/O/sub 4/). Following the previous study, investigations were focused on the x dependence for 0/spl les/x/spl les/0.4 with y=2/3, and y dependence for 0/spl les/y/spl les/1 with x=0.2, in (Mn/sub y/Ni/sub 1-y/)/sub x/Fe/sub 3-x/O/sub 4/. Thermoelectric power factor manifested a maximum near x=0.2 and y=2/3, exceeding that of magnetite, due to a remarkable behavior of electrical resistivity in the x and y dependences. This behavior was shown to originate from that of the mobility in the framework of analysis by small-polaron hopping model. In this model, the hopping energy was shown to change at the Neel temperature.","PeriodicalId":422400,"journal":{"name":"ICT 2005. 24th International Conference on Thermoelectrics, 2005.","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2005-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132092047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synchrotron X-ray structure refinement of Zn/sub 4/Sb/sub 3/ Zn/sub 4/Sb/sub 3/的同步加速器x射线结构精化
ICT 2005. 24th International Conference on Thermoelectrics, 2005. Pub Date : 2005-06-19 DOI: 10.1109/ICT.2005.1519950
G. J. Snyder, P. Stephens, S. Haile
{"title":"Synchrotron X-ray structure refinement of Zn/sub 4/Sb/sub 3/","authors":"G. J. Snyder, P. Stephens, S. Haile","doi":"10.1109/ICT.2005.1519950","DOIUrl":"https://doi.org/10.1109/ICT.2005.1519950","url":null,"abstract":"The structure of the thermoelectric Zn/sub 4/Sb/sub 3/ is refined using synchrotron X-ray powder diffraction data collected at wavelengths both near to and relatively far from the Zn adsorption edge. In agreement with earlier studies, the compound crystallized in a trigonal structure, space group R~3c with a = 12.2406(3)/spl Aring/, c = 12.4361(3)/spl Aring/ at room temperature, and there are three primary sites in the asymmetric unit. Each site contains only one atomic species, in contrast to many previous studies. The primary Zn (36f) site is slightly less than fully occupied, whereas the two Sb sites (18e and 12c) are fully occupied. In addition, several Zn interstitial sites (36f) with low occupancies (>5%) are also present. The results are in agreement with the model proposed by Snyder, as opposed to that originally proposed by Mayer and more recently by Mozharivskyj. The refined site occupancies yield an overall stoichiometry which is consistent with that measured experimentally. The presence of interstitial Zn can be understood in terms of charge balance requirements and is likely responsible for the exceptionally low thermal conductivity of this material.","PeriodicalId":422400,"journal":{"name":"ICT 2005. 24th International Conference on Thermoelectrics, 2005.","volume":"57 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2005-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129883277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Effect of rare earth doping on the thermoelectric and electrical transport properties of the transition metal pentatelluride HfTe/sub 5/ 稀土掺杂对过渡金属五碲化物HfTe/ sub5 /热电输运性质的影响
ICT 2005. 24th International Conference on Thermoelectrics, 2005. Pub Date : 2005-06-19 DOI: 10.1109/ICT.2005.1519882
N. Lowhorn, T. Tritt, E. Abbott, J. Kolis
{"title":"Effect of rare earth doping on the thermoelectric and electrical transport properties of the transition metal pentatelluride HfTe/sub 5/","authors":"N. Lowhorn, T. Tritt, E. Abbott, J. Kolis","doi":"10.1109/ICT.2005.1519882","DOIUrl":"https://doi.org/10.1109/ICT.2005.1519882","url":null,"abstract":"The transition metal pentatellurides HfTe/sub 5/ and ZrTe/sub 5/ have been observed to possess high thermoelectric power factors and anomalous electrical transport behavior. The temperature dependence of the resistivity is semimetallic except for a large resistive peak as a function of temperature at around 75 K for HfTe/sub 5/ and 145 K for ZrTe/sub 5/. At a temperature corresponding to this peak, the thermopower crosses zero as it moves from large positive values to large negative values. Previous doping studies have shown profound and varied effects on the anomalous transport. In this study we investigate the effect on the electrical resistivity, thermopower, and magnetoresistance of doping HfTe/sub 5/ with rare-earth elements. Doping with rare-earth elements of increasing atomic number leads to a systematic suppression of the anomalous transport behavior and large magnetoresistive effect observed in the parent compound. Rare-earth doping also leads to an enhancement of the thermoelectric power factor over previously studied pentatellurides. For nominal Hf/sub 0.75/Nd/sub 0.25/Te/sub 5/ and Hf/sub 0.75/Sm/sub 0.25/Te/sub 5/, values more than a factor of 2 larger than that of the commonly used thermoelectric material Bi/sub 2/Te/sub 3/ were observed.","PeriodicalId":422400,"journal":{"name":"ICT 2005. 24th International Conference on Thermoelectrics, 2005.","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2005-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132196019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Cooling performance of silicon-based thermoelectric device on high power LED 大功率LED上硅基热电器件的散热性能
ICT 2005. 24th International Conference on Thermoelectrics, 2005. Pub Date : 2005-06-19 DOI: 10.1109/ICT.2005.1519885
Jen-Hau Cheng, Chun-Kai Liu, Y. Chao, R. Tain
{"title":"Cooling performance of silicon-based thermoelectric device on high power LED","authors":"Jen-Hau Cheng, Chun-Kai Liu, Y. Chao, R. Tain","doi":"10.1109/ICT.2005.1519885","DOIUrl":"https://doi.org/10.1109/ICT.2005.1519885","url":null,"abstract":"In this paper, a new thermal management application of silicon-based thermoelectric (TE) device on high power LED is unveiled. The silicon-based TE device is fabricated by the microfabrication and flip-chip assembly process. Thermal images photographed by infrared camera demonstrate the cooling function of the silicon-based TE devices. Because the LED chip is encapsulated in a package, the junction temperature of the LED chip cannot be measured directly. An electrical-thermal conversion method is used to measure the junction temperature of the high power LED. The result shows that the silicon-based thermoelectric device can effectively reduce the thermal resistance of the high power LED.","PeriodicalId":422400,"journal":{"name":"ICT 2005. 24th International Conference on Thermoelectrics, 2005.","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2005-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132569301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 83
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信