{"title":"Zn/sub 4/Sb/sub 3/的同步加速器x射线结构精化","authors":"G. J. Snyder, P. Stephens, S. Haile","doi":"10.1109/ICT.2005.1519950","DOIUrl":null,"url":null,"abstract":"The structure of the thermoelectric Zn/sub 4/Sb/sub 3/ is refined using synchrotron X-ray powder diffraction data collected at wavelengths both near to and relatively far from the Zn adsorption edge. In agreement with earlier studies, the compound crystallized in a trigonal structure, space group R~3c with a = 12.2406(3)/spl Aring/, c = 12.4361(3)/spl Aring/ at room temperature, and there are three primary sites in the asymmetric unit. Each site contains only one atomic species, in contrast to many previous studies. The primary Zn (36f) site is slightly less than fully occupied, whereas the two Sb sites (18e and 12c) are fully occupied. In addition, several Zn interstitial sites (36f) with low occupancies (>5%) are also present. The results are in agreement with the model proposed by Snyder, as opposed to that originally proposed by Mayer and more recently by Mozharivskyj. The refined site occupancies yield an overall stoichiometry which is consistent with that measured experimentally. The presence of interstitial Zn can be understood in terms of charge balance requirements and is likely responsible for the exceptionally low thermal conductivity of this material.","PeriodicalId":422400,"journal":{"name":"ICT 2005. 24th International Conference on Thermoelectrics, 2005.","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Synchrotron X-ray structure refinement of Zn/sub 4/Sb/sub 3/\",\"authors\":\"G. J. Snyder, P. Stephens, S. Haile\",\"doi\":\"10.1109/ICT.2005.1519950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The structure of the thermoelectric Zn/sub 4/Sb/sub 3/ is refined using synchrotron X-ray powder diffraction data collected at wavelengths both near to and relatively far from the Zn adsorption edge. In agreement with earlier studies, the compound crystallized in a trigonal structure, space group R~3c with a = 12.2406(3)/spl Aring/, c = 12.4361(3)/spl Aring/ at room temperature, and there are three primary sites in the asymmetric unit. Each site contains only one atomic species, in contrast to many previous studies. The primary Zn (36f) site is slightly less than fully occupied, whereas the two Sb sites (18e and 12c) are fully occupied. In addition, several Zn interstitial sites (36f) with low occupancies (>5%) are also present. The results are in agreement with the model proposed by Snyder, as opposed to that originally proposed by Mayer and more recently by Mozharivskyj. The refined site occupancies yield an overall stoichiometry which is consistent with that measured experimentally. The presence of interstitial Zn can be understood in terms of charge balance requirements and is likely responsible for the exceptionally low thermal conductivity of this material.\",\"PeriodicalId\":422400,\"journal\":{\"name\":\"ICT 2005. 24th International Conference on Thermoelectrics, 2005.\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICT 2005. 24th International Conference on Thermoelectrics, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICT.2005.1519950\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT 2005. 24th International Conference on Thermoelectrics, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICT.2005.1519950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
摘要
利用同步加速器x射线粉末衍射数据,在Zn吸附边附近和相对较远的波长处对热电Zn/sub 4/Sb/sub 3/的结构进行了细化。与前人的研究一致,化合物在室温下结晶为三角形结构,空间群R~3c, a = 12.2406(3)/spl Aring/, c = 12.4361(3)/spl Aring/,在不对称单元中有三个主位。与之前的许多研究不同,每个位点只包含一种原子。主Zn (36f)位点略小于完全占据,而两个Sb位点(18e和12c)则完全占据。此外,还存在几个低占位率(>5%)的Zn间隙位(36f)。结果与Snyder提出的模型一致,而不是最初由Mayer和最近由Mozharivskyj提出的模型。精确的位置占用量产生了与实验测量一致的总体化学计量。间隙锌的存在可以从电荷平衡要求的角度来理解,并且可能是这种材料异常低导热率的原因。
Synchrotron X-ray structure refinement of Zn/sub 4/Sb/sub 3/
The structure of the thermoelectric Zn/sub 4/Sb/sub 3/ is refined using synchrotron X-ray powder diffraction data collected at wavelengths both near to and relatively far from the Zn adsorption edge. In agreement with earlier studies, the compound crystallized in a trigonal structure, space group R~3c with a = 12.2406(3)/spl Aring/, c = 12.4361(3)/spl Aring/ at room temperature, and there are three primary sites in the asymmetric unit. Each site contains only one atomic species, in contrast to many previous studies. The primary Zn (36f) site is slightly less than fully occupied, whereas the two Sb sites (18e and 12c) are fully occupied. In addition, several Zn interstitial sites (36f) with low occupancies (>5%) are also present. The results are in agreement with the model proposed by Snyder, as opposed to that originally proposed by Mayer and more recently by Mozharivskyj. The refined site occupancies yield an overall stoichiometry which is consistent with that measured experimentally. The presence of interstitial Zn can be understood in terms of charge balance requirements and is likely responsible for the exceptionally low thermal conductivity of this material.