Chuanfa Li , Kun Zhang , Xiangran Cheng, Jiaxin Li, Yi Jiang, Pengzhou Li, Bingjie Wang, Huisheng Peng
{"title":"Polymers for flexible energy storage devices","authors":"Chuanfa Li , Kun Zhang , Xiangran Cheng, Jiaxin Li, Yi Jiang, Pengzhou Li, Bingjie Wang, Huisheng Peng","doi":"10.1016/j.progpolymsci.2023.101714","DOIUrl":"https://doi.org/10.1016/j.progpolymsci.2023.101714","url":null,"abstract":"<div><p>Flexible energy storage devices have received much attention owing to their promising applications in rising wearable electronics. By virtue of their high designability, light weight, low cost, high stability, and mechanical flexibility, polymer materials have been widely used for realizing high electrochemical performance and excellent flexibility of energy storage devices. In this review, flexible energy storage devices including supercapacitors and batteries are firstly introduced briefly. Then the design requirements and specific applications of polymer materials as electrodes, electrolytes, separators, and packaging layers of flexible energy storage devices are systematically discussed with an emphasis on the material design and device performance. The remaining challenges and future directions are finally summarized to guide future studies on the development of polymer materials for flexible energy storage devices.</p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"143 ","pages":"Article 101714"},"PeriodicalIF":27.1,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3203136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Engineering interactions between nanoparticles using polymers","authors":"Huibin He , Xiaoxue Shen , Zhihong Nie","doi":"10.1016/j.progpolymsci.2023.101710","DOIUrl":"https://doi.org/10.1016/j.progpolymsci.2023.101710","url":null,"abstract":"<div><p><span>Nanoparticle assembly offers a versatile tool for constructing new structural materials with emergent or collective properties beyond individual nanoparticles. The achievement of desired properties and functions of these assembly materials often require delicate control over the interactions between nanoparticle building blocks. As of now, tremendous efforts have been devoted to manipulating the interparticle interactions by functionalizing the surface of nanoparticles with different ligands (</span><em>e.g.</em><span>, small molecules, DNAs<span>, proteins, and polymers). Among others, polymers are particularly attractive, owing to their tailorable molecular structures, rich functionalities, tunable responsiveness, superior biodegradability and biocompatibility, and easy mass production at low cost, </span></span><em>etc</em><span>. In this review, we present a summary of recent advances in engineering interparticle interactions between nanoparticles, especially inorganic nanoparticles with different sizes, shapes, and compositions, by tailoring the structurally defined polymers grafted or absorbed on the surface of nanoparticles. Discussions are focused on various interactions (</span><em>i.e.</em><span>, steric repulsion, Coulombic interaction, hydrophobic interaction, hydrogen bonding, chemical reaction-induced recognitive interaction, and entropic effect) dominating the assembly of polymer-modified nanoparticles. Furthermore, the effect of external fields (</span><em>e.g.</em>, light field, electric field, <em>etc</em>.) on the interactions between polymer-modified nanoparticles is presented.</p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"143 ","pages":"Article 101710"},"PeriodicalIF":27.1,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1759877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent Progress in π-Conjugated Polymers for Organic Photovoltaics: Solar Cells and Photodetectors","authors":"Chunchen Liu, Lin Shao, Shihao Chen, Zhengwei Hu, Houji Cai, Fei Huang","doi":"10.1016/j.progpolymsci.2023.101711","DOIUrl":"https://doi.org/10.1016/j.progpolymsci.2023.101711","url":null,"abstract":"<div><p><span><span>π-Conjugated polymers show promising potential in the application of organic photovoltaics, including organic solar cells (OSCs) and organic </span>photodetectors (OPDs) because of merits of light-weight, flexibility, facilely tuned color, large-scaled solution-processability, </span><em>etc</em><span>. Over the past three decades, various π-conjugated polymers have been developed owing to the continuous efforts of researchers, which significantly promote the OPVs technology to an unprecedented stage. In order to reveal the relationship among polymer structures<span> to the optical and electronic properties and interchain aggregation and morphology and finally to device performance, it is of great significance to review the progress of π-conjugated polymers for OPVs, particularly for outstanding achievements in recent all-polymer solar cells (all-PSCs), indoor organic photovoltaics (IOPVs), thick-film OSCs, single-component organic solar cells (SCOSCs) and short-wave infrared (SWIR) OPDs. This review highlights general design strategies of π-conjugated polymers for high-performance OPVs, including conjugated backbone engineering, side-chains engineering, regioregularity engineering, halogen substitution and molecular weight control. Then, the development of conjugated polymers for all-PSCs, IOPVs, thick-film OSCs, SCOSCs and OPDs has been summarized. At the end, we summarize the challenges and future directions for studying π-conjugated polymers for OPVs. Therefore, an in-depth understanding of designing π-conjugated polymers is speculated to advance the development of current OPV materials and thus accelerate the ultimate industrialization of the OPV technology.</span></span></p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"143 ","pages":"Article 101711"},"PeriodicalIF":27.1,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2620151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sustainable developments in polyolefin chemistry: Progress, challenges, and outlook","authors":"Xiao-Yan Wang , Yanshan Gao , Yong Tang","doi":"10.1016/j.progpolymsci.2023.101713","DOIUrl":"https://doi.org/10.1016/j.progpolymsci.2023.101713","url":null,"abstract":"<div><p><span>Polyolefins are the largest-scale synthetic plastics and play a key role in modern society. Their production consumes huge amounts of fossil-derived </span>monomer<span><span> feedstocks, which unfortunately became discarded wastes after use with a very low recycling ratio, causing severe environmental pollution and huge consumption of non-renewable resources. This lack of sustainability could in principle be solved by reusing the waste polyolefins repeatedly as virgin materials or recovering </span>olefin monomers for re-entering the polyolefin cycle. However, it is challenging due to their chemical inertness (C-H and C-C bonds) and lack of degradation sites along the polyolefin chains. Therefore, to make polyolefins more sustainable, degrading or modifying the waste polyolefins on large scales could facilitate their reuse as virgin polyolefins or recovery to polymerizable feedstocks, rethinking the design and synthesis from monomer feedstocks could afford inherently recyclable and thus more sustainable polyolefin or polyolefin-like materials. Given the above, this review will introduce recent progress in the rapidly advancing field: 1) Recycling and upcycling to fuels and other small molecule products, olefin monomer, telechelic products, reprocessable and functional polyolefin materials; 2) Increasing sustainability by the de novo design and synthesis of new degradable and reprocessable polyolefin and polyolefin-like polymers.</span></p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"143 ","pages":"Article 101713"},"PeriodicalIF":27.1,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3203137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wenliang Song , Yu Zhang , Chinh Hoang Tran , Ha Kyung Choi , Deng-Guang Yu , Il Kim
{"title":"Porous organic polymers with defined morphologies: Synthesis, assembly, and emerging applications","authors":"Wenliang Song , Yu Zhang , Chinh Hoang Tran , Ha Kyung Choi , Deng-Guang Yu , Il Kim","doi":"10.1016/j.progpolymsci.2023.101691","DOIUrl":"https://doi.org/10.1016/j.progpolymsci.2023.101691","url":null,"abstract":"<div><p>Porous organic polymers<span> (POPs) have well-defined porosities, high surface areas, and attractive surface chemical functionalities. Because of these properties, POPs and their derivatives, including their pyrolysis (carbonaceous) products, have broad applications in catalysis, absorption, separation, sensing, biomedical engineering, and energy storage/conversion. In particular, both the porosity and morphology of porous materials have crucial impacts on their performance. The controlled synthesis of morphological defined POPs via various assembly approaches offers an effective route to prepare novel nanomaterials with broad application scope in the above-mentioned fields. Therefore, a summary of recent research related to POPs will stimulate researchers to explore this field at a deeper level. This review provides a summary and analysis of progress in the last decade toward the development of morphologically controlled POPs. Established works and recent progress in the synthesis of these materials are first reviewed, followed by the systematic discussion of the methodologies and key parameters for the fabrication of diverse morphology-controlled POPs. The various emerging applications afforded by the POPs are summarized, and special attention is paid to the relationship between the morphology and performance of POP materials. Finally, current challenges in the development of application-driven morphological control are addressed, revealing areas for future investigation. We hope that this review will encourage future investigation of POPs with defined morphologies as well as exploration on hitherto unknown characteries of the morphology derived innovative applications.</span></p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"142 ","pages":"Article 101691"},"PeriodicalIF":27.1,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3082042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Danielle M. Fitzgerald , Yolonda L. Colson , Mark W. Grinstaff
{"title":"Synthetic pressure sensitive adhesives for biomedical applications","authors":"Danielle M. Fitzgerald , Yolonda L. Colson , Mark W. Grinstaff","doi":"10.1016/j.progpolymsci.2023.101692","DOIUrl":"https://doi.org/10.1016/j.progpolymsci.2023.101692","url":null,"abstract":"<div><p>Pressure sensitive adhesives are components of everyday products found in homes, offices, and hospitals. Serving the general purpose of fissure repair and object fixation, pressure sensitive adhesives indiscriminately bind surfaces, as long as contact pressure is administered at application. With that being said, the chemical and material properties<span><span><span> of the adhesive formulation define the strength of a pressure sensitive adhesive to a particular surface. Given our increased understanding of the </span>viscoelastic material<span> requirements as well as the intermolecular interactions<span> at the binding interface required for functional adhesives, pressure sensitive adhesives are now being explored for greater use. New polymer formulations impart functionality and degradability for both internal and external applications. This review highlights the structure-property relationships between polymer architecture and pressure sensitive adhesion, specifically for medicine. We discuss the rational, molecular-level design of </span></span></span>synthetic polymers for durable, removable, and biocompatible adhesion to wet surfaces like tissue. Finally, we examine prevalent challenges in biomedical wound closure and the new, innovative strategies being employed to address them. We conclude by summarizing the progress of current research, identifying additional clinical opportunities, and discussing future prospects.</span></p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"142 ","pages":"Article 101692"},"PeriodicalIF":27.1,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10237363/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3082043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Supramolecular polymer materials based on ureidopyrimidinone quadruple hydrogen bonding units","authors":"Jente Verjans, Richard Hoogenboom","doi":"10.1016/j.progpolymsci.2023.101689","DOIUrl":"https://doi.org/10.1016/j.progpolymsci.2023.101689","url":null,"abstract":"<div><p><span><span>Supramolecular polymer materials are polymeric structures that are physically crosslinked by non-covalent interactions such as ionic interactions, host-guest complexation and </span>hydrogen bonding<span>. The resulting materials generally display stimuli-responsive behavior and/or healable properties, which makes them excellent candidates for the design of dynamic materials. Inspired by its omnipresence in natural systems, hydrogen bonding has proven to be useful for the development of synthetic materials with dynamic properties. Inspired by the base-pairing in the DNA<span> double helix, Meijer et al. developed the self-complementary quadruple hydrogen bonding unit ureidopyimidinone (UPy), which has a strong dimerization constant (K</span></span></span><sub>dim</sub> > 10<sup>7</sup> <em>M</em> <sup>−1</sup><span> ). The incorporation of UPy motifs in polymeric precursors led to a plethora of hydrogen bonded materials with applications ranging from artificial arteries to reversible adhesives. This review will focus on design strategies to synthesize these UPy-containing polymer materials, which can be split into three main categories based on the location of the UPy arrays: UPy in the main-chain, UPy in the side-chains or UPy at the chain-ends. In addition to the synthetic routes, the material properties of the resulting UPy-containing supramolecular polymer materials will be discussed.</span></p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"142 ","pages":"Article 101689"},"PeriodicalIF":27.1,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1822386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mingjun Qiu , Weiwei Du , Shangyu Zhou , Pengzhe Cai , Yingwu Luo , Xiaoxue Wang , Rong Yang , Junjie Zhao
{"title":"Recent progress in non-photolithographic patterning of polymer thin films","authors":"Mingjun Qiu , Weiwei Du , Shangyu Zhou , Pengzhe Cai , Yingwu Luo , Xiaoxue Wang , Rong Yang , Junjie Zhao","doi":"10.1016/j.progpolymsci.2023.101688","DOIUrl":"https://doi.org/10.1016/j.progpolymsci.2023.101688","url":null,"abstract":"<div><p><span><span><span>Patterned polymer thin films are essential components in many devices and applications owing to the multi-functionality, flexibility, lightweight and cost-efficiency. Unfortunately, conventional </span>photolithography needs the use of developers and strippers which contain solvents and reagents that may dissolve, swell or degrade the polymer thin film substrates. Alternatively, non-photolithographic strategies provide alternative options and avoid the complicated optical systems, offering versatile routes for fabricating polymeric micro- and </span>nanostructures<span>. In this review, we summarize the recent progress in non-photolithographic patterning methods including soft lithography<span>, nanoimprint lithography, direct writing, self-assembly of </span></span></span>block copolymers<span>, area-selective vapor phase deposition and instability induced patterning. These patterning approaches have been applied to various applications such as chromic devices, polymer light-emitting diodes, sensors, transistors, and protein and cellular engineering and many other scenarios. Finally, the subsisting challenges and future research directions of non-photolithographic patterning approaches are highlighted from the aspect of resolution, reliability and scalability.</span></p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"142 ","pages":"Article 101688"},"PeriodicalIF":27.1,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3203138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Control of coordination polymerization behavior by counter-anionic effects","authors":"Ryo Tanaka, Oluwaseyi Aderemi Ajala, Yuushou Nakayama, Takeshi Shiono","doi":"10.1016/j.progpolymsci.2023.101690","DOIUrl":"https://doi.org/10.1016/j.progpolymsci.2023.101690","url":null,"abstract":"<div><p><span>In coordination polymerization<span> chemistry, the most active species are cationic transition metals which bear vacant sites for </span></span>monomer coordination. The steric and electronic properties around the metal center are strongly related to the polymerization behavior. Thus, the development of the catalyst system mainly represents the design of neutral metal complex precursors, especially the structure of the ligand. On the other hand, the choice of counteranions derived from the cocatalysts sometimes plays a crucial role in the controlled coordination polymerization. Some unusual polymerization behaviors on stereospecificity, activity, and monomer reactivity ratios have been reported by designing the structure of these cocatalysts.</p><p>The review summarizes these examples of polymerization controlled by cocatalysts. Various cocatalysts, such as methylaluminoxane (MAO), fluoroarylboranes, and borates with different activation mechanisms, are introduced based on their structural analysis and molecular design. Heterogeneous cocatalysts, important for industrial applications, are also mentioned with their various characterization methods. The application of these cocatalysts is discussed, along with the introduction of several techniques evaluating the relationship between cocatalysts and polymerization behavior. Moreover, the counter-anionic effect in the late-transition metal-catalyzed polymerization chemistry, which recently attracted many researchers for its versatile applicability for polar monomers, is reviewed.</p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"142 ","pages":"Article 101690"},"PeriodicalIF":27.1,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1623511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tellurium-containing polymers: Recent developments and trends","authors":"Yiheng Dai , Jun Guan , Shenghan Zhang , Shuojiong Pan, Banruo Xianyu, Zhuoxin Ge, Jinyan Si, Chaowei He, Huaping Xu","doi":"10.1016/j.progpolymsci.2023.101678","DOIUrl":"https://doi.org/10.1016/j.progpolymsci.2023.101678","url":null,"abstract":"<div><p><span>Significant progresses have been made in tellurium-containing polymers over the past decades. Just like other heteroatom-containing polymers, tellurium-containing polymers exhibit several unique properties and promising applications. However, unlike elements such as boron, silicon<span>, sulfur and so on, tellurium<span> in polymers remains a fresh perspective for many researchers. In this review, we shall illustrate the diversification of tellurium-containing polymers and their respective synthetic methods. Besides, the properties of tellurium-containing polymers including redox-responsiveness, coordination properties, optoelectronic properties and so on will be discussed in detail. Furthermore, the performances of tellurium-containing polymers in biomedicine, optoelectronic materials and some recent advanced fields will be demonstrated. Overall, by reviewing the recent developments and trends of tellurium-containing polymers, we wish to popularize the concepts and it is anticipated that this review could function as an easy-to-read and comprehensive handbook to provide some inspirations and possible scientific supports for researchers in the field of </span></span></span>chemistry and materials.</p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"141 ","pages":"Article 101678"},"PeriodicalIF":27.1,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1759879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}