Yuhe Zhang , Jiahao Shi , Bin Ma , Ya-Nan Zhou , Haiyang Yong , Jianzhong Li , Xiangyi Kong , Dezhong Zhou
{"title":"Functionalization of polymers for intracellular protein delivery","authors":"Yuhe Zhang , Jiahao Shi , Bin Ma , Ya-Nan Zhou , Haiyang Yong , Jianzhong Li , Xiangyi Kong , Dezhong Zhou","doi":"10.1016/j.progpolymsci.2023.101751","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>With the growing demand for clinically reliable therapeutics, traditional small molecule drugs are increasingly limited by their short circulation duration, low bioavailability, and poor targeting. Protein drugs, on the other hand, have gained popularity due to their high activity, high specificity, low cytotoxicity, and distinct biological function. Especially, monoclonal antibodies are among the top 10 drugs in global sales. However, protein drugs have limitations such as complex and unstable structure, immune clearance caused by antigen fragments on the surface, and inability to penetrate </span>cell membranes<span>, which severely restrict intracellular delivery. Using carriers can greatly enhance the stability of protein drugs, prevent immune clearance, and facilitate their cellular uptake and cytosolic release. Polymers are commonly used for delivering small molecules, DNA<span>, and RNA. However, developing polymers for protein delivery with high efficiency and low cytotoxicity still faces several challenges, including poor protein binding ability, membrane </span></span></span>impermeability<span>, and low endo/lysosomal escape efficiency. Functionalizing polymers with specific components such as fluorine, boron, guanidine, heterocycles, and multicomponents can improve polymer-protein interaction, cell membrane penetration, endo/lysosomal escape, and biocompatibility. This review provides an overview of strategies for polymer functionalization and their effects on protein delivery. It also discusses trends and challenges in developing polymer carriers for protein delivery.</span></p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"146 ","pages":"Article 101751"},"PeriodicalIF":26.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079670023001053","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
With the growing demand for clinically reliable therapeutics, traditional small molecule drugs are increasingly limited by their short circulation duration, low bioavailability, and poor targeting. Protein drugs, on the other hand, have gained popularity due to their high activity, high specificity, low cytotoxicity, and distinct biological function. Especially, monoclonal antibodies are among the top 10 drugs in global sales. However, protein drugs have limitations such as complex and unstable structure, immune clearance caused by antigen fragments on the surface, and inability to penetrate cell membranes, which severely restrict intracellular delivery. Using carriers can greatly enhance the stability of protein drugs, prevent immune clearance, and facilitate their cellular uptake and cytosolic release. Polymers are commonly used for delivering small molecules, DNA, and RNA. However, developing polymers for protein delivery with high efficiency and low cytotoxicity still faces several challenges, including poor protein binding ability, membrane impermeability, and low endo/lysosomal escape efficiency. Functionalizing polymers with specific components such as fluorine, boron, guanidine, heterocycles, and multicomponents can improve polymer-protein interaction, cell membrane penetration, endo/lysosomal escape, and biocompatibility. This review provides an overview of strategies for polymer functionalization and their effects on protein delivery. It also discusses trends and challenges in developing polymer carriers for protein delivery.
期刊介绍:
Progress in Polymer Science is a journal that publishes state-of-the-art overview articles in the field of polymer science and engineering. These articles are written by internationally recognized authorities in the discipline, making it a valuable resource for staying up-to-date with the latest developments in this rapidly growing field.
The journal serves as a link between original articles, innovations published in patents, and the most current knowledge of technology. It covers a wide range of topics within the traditional fields of polymer science, including chemistry, physics, and engineering involving polymers. Additionally, it explores interdisciplinary developing fields such as functional and specialty polymers, biomaterials, polymers in drug delivery, polymers in electronic applications, composites, conducting polymers, liquid crystalline materials, and the interphases between polymers and ceramics. The journal also highlights new fabrication techniques that are making significant contributions to the field.
The subject areas covered by Progress in Polymer Science include biomaterials, materials chemistry, organic chemistry, polymers and plastics, surfaces, coatings and films, and nanotechnology. The journal is indexed and abstracted in various databases, including Materials Science Citation Index, Chemical Abstracts, Engineering Index, Current Contents, FIZ Karlsruhe, Scopus, and INSPEC.