Mostafa Badreldin , Pedro Salas-Ambrosio , Elisabeth Garanger , Sébastien Lecommandoux , Simon Harrisson , Colin Bonduelle
{"title":"Thermoresponsive polymers: From natural proteins to amino acid based polymer synthesis","authors":"Mostafa Badreldin , Pedro Salas-Ambrosio , Elisabeth Garanger , Sébastien Lecommandoux , Simon Harrisson , Colin Bonduelle","doi":"10.1016/j.progpolymsci.2023.101752","DOIUrl":null,"url":null,"abstract":"<div><p>In polymer science, thermoresponsiveness refers to macromolecular systems that display a marked and discontinuous change in their physical properties with temperature. Such smart polymers are the focus of increasing attention as they provide new solutions to many applications (<em>e.g.</em>, drug delivery, nanotechnology, tissue engineering and biotechnology). This review focuses on amino acid based polymers, mainly synthetic polypeptides that are obtained by ring-opening polymerization. These include polymers based on natural amino acids, synthetic or modified amino acids and <em>N</em>-alkylated glycine derivatives. Based on what is known about the behavior of natural proteins in response to temperature variations, this review provides a comprehensive overview of the state of the art of thermosensitive polypeptides through a detailed description i) of the structure/thermoresponsiveness relationship, ii) of the mechanisms involved at the molecular level, iii) of their possible applications both in materials science and in biomedical applications.</p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"147 ","pages":"Article 101752"},"PeriodicalIF":26.0000,"publicationDate":"2023-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079670023001065","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In polymer science, thermoresponsiveness refers to macromolecular systems that display a marked and discontinuous change in their physical properties with temperature. Such smart polymers are the focus of increasing attention as they provide new solutions to many applications (e.g., drug delivery, nanotechnology, tissue engineering and biotechnology). This review focuses on amino acid based polymers, mainly synthetic polypeptides that are obtained by ring-opening polymerization. These include polymers based on natural amino acids, synthetic or modified amino acids and N-alkylated glycine derivatives. Based on what is known about the behavior of natural proteins in response to temperature variations, this review provides a comprehensive overview of the state of the art of thermosensitive polypeptides through a detailed description i) of the structure/thermoresponsiveness relationship, ii) of the mechanisms involved at the molecular level, iii) of their possible applications both in materials science and in biomedical applications.
期刊介绍:
Progress in Polymer Science is a journal that publishes state-of-the-art overview articles in the field of polymer science and engineering. These articles are written by internationally recognized authorities in the discipline, making it a valuable resource for staying up-to-date with the latest developments in this rapidly growing field.
The journal serves as a link between original articles, innovations published in patents, and the most current knowledge of technology. It covers a wide range of topics within the traditional fields of polymer science, including chemistry, physics, and engineering involving polymers. Additionally, it explores interdisciplinary developing fields such as functional and specialty polymers, biomaterials, polymers in drug delivery, polymers in electronic applications, composites, conducting polymers, liquid crystalline materials, and the interphases between polymers and ceramics. The journal also highlights new fabrication techniques that are making significant contributions to the field.
The subject areas covered by Progress in Polymer Science include biomaterials, materials chemistry, organic chemistry, polymers and plastics, surfaces, coatings and films, and nanotechnology. The journal is indexed and abstracted in various databases, including Materials Science Citation Index, Chemical Abstracts, Engineering Index, Current Contents, FIZ Karlsruhe, Scopus, and INSPEC.