Progress in Polymer Science最新文献

筛选
英文 中文
Structural engineering of polyurethanes for biomedical applications 用于生物医学应用的聚氨酯结构工程学
IF 27.1 1区 化学
Progress in Polymer Science Pub Date : 2024-02-13 DOI: 10.1016/j.progpolymsci.2024.101803
Haoran Wang, Tong Li, Jia Li, Ruohong Zhao, Ao Ding, Fu-Jian Xu
{"title":"Structural engineering of polyurethanes for biomedical applications","authors":"Haoran Wang,&nbsp;Tong Li,&nbsp;Jia Li,&nbsp;Ruohong Zhao,&nbsp;Ao Ding,&nbsp;Fu-Jian Xu","doi":"10.1016/j.progpolymsci.2024.101803","DOIUrl":"10.1016/j.progpolymsci.2024.101803","url":null,"abstract":"<div><p>Polyurethane, a synthetic polymer distinguished by its urethane (carbamate, -NHCOO-) and/or urea (-NHCONH-) linkages, has been applied in various industries since its discovery in 1937 by Bayer and colleagues. The successful <em>in vivo</em> use of segmented multiblock thermoplastic polyurethane in 1967 marked the beginning of its development for biomedical applications. Over the past few decades, research on polyurethane biomaterials has evolved from focusing on biostable to biodegradable forms, exploring multifunctionality and application in areas like functional medical devices, tissue engineering scaffolds, drug delivery systems, etc.</p><p>This review aims to summarize the recent advancements in engineering polyurethane structures for biomedical applications, presenting the main methods utilized in their preparation, biological functions, and their main biomedical applications. In addition, we proposed four general strategies for engineering polyurethane structures in the biomedical field, offering a structured methodology for researchers and engineers engaged in polyurethane biomaterials work. Concluding the review, we spotlight future development directions, emphasizing multifunctional programmable polyurethane, peptide-mimicking polyurethane, and poly (hydroxyl urethane).</p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"151 ","pages":"Article 101803"},"PeriodicalIF":27.1,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139875942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chiral macromolecules and supramolecular assemblies: Synthesis, properties and applications 手性大分子和超分子组装体:合成、性质和应用
IF 27.1 1区 化学
Progress in Polymer Science Pub Date : 2024-02-08 DOI: 10.1016/j.progpolymsci.2024.101800
Mingyue Zhang , Minju Kim , Woosung Choi , Jinyoung Choi , Dong Ha Kim , Yijiang Liu , Zhiqun Lin
{"title":"Chiral macromolecules and supramolecular assemblies: Synthesis, properties and applications","authors":"Mingyue Zhang ,&nbsp;Minju Kim ,&nbsp;Woosung Choi ,&nbsp;Jinyoung Choi ,&nbsp;Dong Ha Kim ,&nbsp;Yijiang Liu ,&nbsp;Zhiqun Lin","doi":"10.1016/j.progpolymsci.2024.101800","DOIUrl":"10.1016/j.progpolymsci.2024.101800","url":null,"abstract":"<div><p>Chirality, an inherent characteristic observed throughout nature, plays a pivotal role across a wide range of scales, from subatomic to galactic, and holds significance in myriad scientific fields, including chemistry, biology, and nanotechnology. Since the discovery of molecular chirality in 1848, there have been monumental advances, especially in the realm of chiral macromolecules and chiral supramolecular assemblies. This progress, primarily propelled by innovations in polymer science and supramolecular chemistry, has opened up numerous applications, spanning enantioselective sensing, catalysis, optics, and biomedicine. Both chiral macromolecules, synthesized either from chiral or achiral components, and chiral supramolecular assemblies, often manifest enhanced chiroptical responses and other intriguing chiral-related characteristics. However, challenges remain, particularly in precisely characterizing and understanding the governing factors and dynamics of these complex systems, as well as in synthesizing novel chiral macromolecules and chiral supramolecular assemblies that can efficiently interact with circularly polarized light. This review offers a comprehensive overview of the most recent advances in the synthesis, properties, characterization, and applications of chiral macromolecules and chiral supramolecular assemblies. In addition, it provides an insightful perspective on the current challenges and the future direction of research in this rapidly evolving field.</p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"151 ","pages":"Article 101800"},"PeriodicalIF":27.1,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139891315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multifunctional naturally derived bioadhesives: From strategic molecular design toward advanced biomedical applications 多功能天然生物粘合剂:从战略性分子设计到先进的生物医学应用
IF 27.1 1区 化学
Progress in Polymer Science Pub Date : 2024-01-26 DOI: 10.1016/j.progpolymsci.2024.101792
Mahshid Kharaziha , Thomas Scheibel , Sahar Salehi
{"title":"Multifunctional naturally derived bioadhesives: From strategic molecular design toward advanced biomedical applications","authors":"Mahshid Kharaziha ,&nbsp;Thomas Scheibel ,&nbsp;Sahar Salehi","doi":"10.1016/j.progpolymsci.2024.101792","DOIUrl":"10.1016/j.progpolymsci.2024.101792","url":null,"abstract":"<div><p>In the last decades, adhesives derived from natural resources (i.e., bioadhesives) have emerged as promising alternative to the standard wound closure devices, including sutures, clips, and strips, owing to relatively easy and rapid application, minimal tissue damage, fast hemostasis, and ability to decrease the risk of infection. Various synthetic and natural materials have been utilized as bioadhesives. These materials find extensive applications in various biomedical fields, ranging from simple wound sealing to controlled drug delivery, tissue regeneration, and noninvasive therapy. Considering the weak underwater adhesion, degradability, and biological performances of synthetic adhesives, naturally derived-based adhesives are more attractive. The first generation of these bioadhesives provided primarily only one function. Moreover, they had issues including long curing time, slow adhesion, high degradation rate, low mechanical properties, and the risk of transferring contamination to the wound. Various chemically and genetically engineered strategies have been applied to advance their multifunctionality. The synergy of bonding chemistry, topography, and mechanics of dissipation in their structure supports the improved adhesion and controlled degradation rate. Various naturally derived bioadhesives are developed that cover subjects from innovative biomaterial synthesis or functionalization and cutting-edge manufacturing processes. However, to fulfill all the criteria of an ideal bioadhesive for clinical applications, more efforts should be devoted to investigating the surface characteristics of target tissues and the long-term relationship between the physiochemical properties of natural polymers and cohesion and adhesion mechanisms, as well as adhesive functionality. This review outlines the recent progress on naturally-derived bioadhesives, including proteins and polysaccharides, focusing on designing approaches based on chemically and genetically engineering strategies, development, and applications. Furthermore, the challenges of current studies are summarized to show future perspectives for developing bioengineered and high-performance naturally-derived bioadhesives for clinical use.</p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"150 ","pages":"Article 101792"},"PeriodicalIF":27.1,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079670024000091/pdfft?md5=a4d05abdf25efab9a2679f8e716a6bf3&pid=1-s2.0-S0079670024000091-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139568130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rigorous recognition mode analysis of molecularly imprinted polymers—Rational design, challenges, and opportunities 分子印迹聚合物的严格识别模式分析--合理设计、挑战与机遇
IF 27.1 1区 化学
Progress in Polymer Science Pub Date : 2024-01-19 DOI: 10.1016/j.progpolymsci.2024.101790
Yanxia Liu , Lulu Wang , Haitao Li , Lin Zhao , Yanfu Ma , Yagang Zhang , Jian Liu , Yen Wei
{"title":"Rigorous recognition mode analysis of molecularly imprinted polymers—Rational design, challenges, and opportunities","authors":"Yanxia Liu ,&nbsp;Lulu Wang ,&nbsp;Haitao Li ,&nbsp;Lin Zhao ,&nbsp;Yanfu Ma ,&nbsp;Yagang Zhang ,&nbsp;Jian Liu ,&nbsp;Yen Wei","doi":"10.1016/j.progpolymsci.2024.101790","DOIUrl":"10.1016/j.progpolymsci.2024.101790","url":null,"abstract":"<div><p>Supramolecular chemistry<span><span> now presents an elaborate „enabling tool“ that offers exciting opportunities for novel functional material<span> design. One of the areas to benefit from recent advances in supramolecular chemistry is the field of molecularly imprinted polymers (MIPs), also known as “synthetic antibodies”. It uses the memory of template molecules to form tailor-made binding sites in the </span></span>polymer matrix<span><span>. This review provides insights from rigorous recognition mode analysis perspectives and highlights evolving approaches in MIPs. First, the principles and recognition mode of molecular imprinting technology are carefully reviewed. The similarities and major differences between MIPs and enzymes are discussed. The internal 3D structure model of MIP is depicted, the origin and consequences of binding site heterogeneity are highlighted, and methods for the optimization of the recognition degree and imprinting efficiency are summarized. The criteria for evaluating imprinting efficacy and the role of chiral recognition in molecular imprinting are discussed. Subsequently, important approaches for the design and synthesis of MIPs a reviewed. Relevant approaches include dye displacement strategy for MIP sensors, multi-functional group recognition, monomolecular imprinting using dendrimers, solvent programmable polymer (SPP) based on </span>restricted rotation, template activated molecular imprinting strategy, molecular imprinting with click chemistry, and evolution of molecular imprinting with computational strategies. Finally, the exciting progress of MIPs for recognition of biomacromolecules such as proteins, bacteria and viruses are discussed. The goal of this review is thus to inspire new applications of MIP materials and to provide a guide for how these applications might become a reality.</span></span></p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"150 ","pages":"Article 101790"},"PeriodicalIF":27.1,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139505125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrogels for bioinspired soft robots 用于生物启发软机器人的水凝胶
IF 27.1 1区 化学
Progress in Polymer Science Pub Date : 2024-01-18 DOI: 10.1016/j.progpolymsci.2024.101791
Chang Seo Park , Yong-Woo Kang , Hyeonuk Na , Jeong-Yun Sun
{"title":"Hydrogels for bioinspired soft robots","authors":"Chang Seo Park ,&nbsp;Yong-Woo Kang ,&nbsp;Hyeonuk Na ,&nbsp;Jeong-Yun Sun","doi":"10.1016/j.progpolymsci.2024.101791","DOIUrl":"10.1016/j.progpolymsci.2024.101791","url":null,"abstract":"<div><p>Amid the ever-advancing landscape of industrial robotics, soft robots in particular have attracted substantial attention due to their remarkable structural adaptability and high efficiency and stability in dynamic environments. Living organisms are, in essence, natural soft robots, composed of diverse and efficient soft organs, each precisely performing assigned functions as a result of a long-term evolution. Fundamental components of organisms, such as material, designs, and working mechanisms, have been a paradigmatic model for the development of soft robots. Recently, these researches have been boosted with the advancement in hydrogel, a synthetic material that closely resembles the constituents of living organisms. The distinctive features of hydrogel - softness, stimuli-responsiveness, biocompatibility, ionicity, and transparency - have enabled the reproduction of nature-inspired strategies, significantly contributing to the progress in soft robots. In this review, we discuss how these properties have been exploited in various applications in soft robots to emulate blueprints found in nature. Moreover, we provide insightful perspectives on overcoming obstacles and research directions, offering a glimpse into future of soft robots.</p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"150 ","pages":"Article 101791"},"PeriodicalIF":27.1,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139504737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conjugated microporous polymers for advanced chemical sensing applications 用于先进化学传感应用的共轭微孔聚合物
IF 27.1 1区 化学
Progress in Polymer Science Pub Date : 2024-01-01 DOI: 10.1016/j.progpolymsci.2023.101770
Weisi He, Ju Duan, He Liu, Cheng Qian, Meifang Zhu, Weiyi Zhang, Yaozu Liao
{"title":"Conjugated microporous polymers for advanced chemical sensing applications","authors":"Weisi He,&nbsp;Ju Duan,&nbsp;He Liu,&nbsp;Cheng Qian,&nbsp;Meifang Zhu,&nbsp;Weiyi Zhang,&nbsp;Yaozu Liao","doi":"10.1016/j.progpolymsci.2023.101770","DOIUrl":"10.1016/j.progpolymsci.2023.101770","url":null,"abstract":"<div><p><span>Exploring advanced chemical sensing applications using porous materials is of critical importance for emerging industries such as Internet of Things, carbon neutrality, new energy resources, </span><em>etc.</em><span><span><span> Conjugated microporous polymers (CMPs), being well-renowned for their extended π-π conjugations, tunable </span>pore structures<span>, tailored chemical components, and high surface areas, have attracted increasing interests for chemical sensing applications. Here, recent milestones in the sensing applications of CMPs are presented, with an emphasis on the synthetic routes, structural requirements or parameters that dominate their sensing properties and functionalities. This review focuses on multiple chemical sensing devices including: i) fluorescent sensors, ii) electrochemical sensors, iii) colorimetric sensors, iv) resistive sensors, and v) versatile sensors. The key application areas of these CMPs-based sensors for detecting multiple matters including industrial exhausts, explosives, </span></span>metal cations, halogen species, micropollutants, organic hazards, biological matters, and multiple. species, </span><em>etc.</em>, are highlighted. The in-depth understanding of the sensing mechanisms and structure-property-function relationships of CMPs are also provided. Finally, a perspective on the future research directions and challenges of CMPs-based sensors is presented.</p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"148 ","pages":"Article 101770"},"PeriodicalIF":27.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138635620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Structural determinants of stimuli-responsiveness in amphiphilic macromolecular nano-assemblies 两亲大分子纳米组装中刺激-反应性的结构决定因素
IF 27.1 1区 化学
Progress in Polymer Science Pub Date : 2024-01-01 DOI: 10.1016/j.progpolymsci.2023.101765
Hongxu Liu , Hung-Hsun Lu , Yasin Alp , Ruiling Wu , S. Thayumanavan
{"title":"Structural determinants of stimuli-responsiveness in amphiphilic macromolecular nano-assemblies","authors":"Hongxu Liu ,&nbsp;Hung-Hsun Lu ,&nbsp;Yasin Alp ,&nbsp;Ruiling Wu ,&nbsp;S. Thayumanavan","doi":"10.1016/j.progpolymsci.2023.101765","DOIUrl":"10.1016/j.progpolymsci.2023.101765","url":null,"abstract":"<div><p><span>Stimuli-responsive nano-assemblies from amphiphilic macromolecules could undergo controlled structural transformations and generate diverse macroscopic phenomenon under stimuli. Due to the controllable responsiveness, they have been applied for broad material and biomedical applications, such as biologics delivery, sensing, imaging, and catalysis. Understanding the mechanisms of the assembly-disassembly processes and structural determinants behind the responsive properties is fundamentally important for designing the next generation of nano-assemblies with programmable responsiveness. In this review, we focus on structural determinants of assemblies from amphiphilic macromolecules and their macromolecular level alterations under stimuli, such as the disruption of hydrophilic-lipophilic balance (HLB), </span>depolymerization, decrosslinking, and changes of molecular packing in assemblies, which eventually lead to a series of macroscopic phenomenon for practical purposes. Applications of stimuli-responsive nano-assemblies in delivery, sensing and imaging were also summarized based on their structural features. We expect this review could provide readers an overview of the structural considerations in the design and applications of nano-assemblies and incentivize more explorations in stimuli-responsive soft matters.</p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"148 ","pages":"Article 101765"},"PeriodicalIF":27.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138571871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent progress in CO2-based polyurethanes and polyureas 二氧化碳基聚氨酯和聚脲的最新进展
IF 27.1 1区 化学
Progress in Polymer Science Pub Date : 2023-12-29 DOI: 10.1016/j.progpolymsci.2023.101780
Xu Ou , Yajuan Niu , Qinbo Liu , Legeng Li , Feifan Wei , Yongheng Cui , Yingjie Zhou , Feng Yan
{"title":"Recent progress in CO2-based polyurethanes and polyureas","authors":"Xu Ou ,&nbsp;Yajuan Niu ,&nbsp;Qinbo Liu ,&nbsp;Legeng Li ,&nbsp;Feifan Wei ,&nbsp;Yongheng Cui ,&nbsp;Yingjie Zhou ,&nbsp;Feng Yan","doi":"10.1016/j.progpolymsci.2023.101780","DOIUrl":"https://doi.org/10.1016/j.progpolymsci.2023.101780","url":null,"abstract":"<div><p><span>As an abundant, renewable, and inexpensive carbon feedstock, CO</span><sub>2</sub><span> can be converted into valuable products, creating substantial environmental and economic benefits. Polyurethanes (PUs) and polyureas (PUAs) with versatile properties have been commonly used in everyday life applications and possess vast market demand. CO</span><sub>2</sub>-sourced PUs and PUAs can alleviate the involvement of petroleum, and they have attracted ever-increasing attention from industry and academia because of their high economic value and fancy properties in many high-value-added material fields. This has led to their recognition as a promising strategy from the viewpoint of green and sustainable chemistry. In this review, the state-of-the-art research progress on CO<sub>2</sub>-based PUs and PUAs, with particular emphasis on their synthetic principles, modifications, applications, and degradability are summarized. Additionally, future considerations, prospects, and possible challenges in converting CO<sub>2</sub> to nitrogenous polymers are also discussed. This review is intended to serve as a tutorial guide for the future development of novel CO<sub>2</sub>-sourced PUs and PUAs with unique properties and functions.</p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"149 ","pages":"Article 101780"},"PeriodicalIF":27.1,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139111849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Monomer recycling of polyethylene terephthalate, polycarbonate and polyethers: Scalable processes to achieve high carbon circularity 聚对苯二甲酸乙二酯、聚碳酸酯和聚醚的单体回收:实现高碳循环的可扩展工艺
IF 27.1 1区 化学
Progress in Polymer Science Pub Date : 2023-12-28 DOI: 10.1016/j.progpolymsci.2023.101783
Dambarudhar Parida , Annelore Aerts , Karolien Vanbroekhoven , Miet Van Dael , Harisekhar Mitta , Lingfeng Li , Walter Eevers , Kevin M. Van Geem , Elias Feghali , Kathy Elst
{"title":"Monomer recycling of polyethylene terephthalate, polycarbonate and polyethers: Scalable processes to achieve high carbon circularity","authors":"Dambarudhar Parida ,&nbsp;Annelore Aerts ,&nbsp;Karolien Vanbroekhoven ,&nbsp;Miet Van Dael ,&nbsp;Harisekhar Mitta ,&nbsp;Lingfeng Li ,&nbsp;Walter Eevers ,&nbsp;Kevin M. Van Geem ,&nbsp;Elias Feghali ,&nbsp;Kathy Elst","doi":"10.1016/j.progpolymsci.2023.101783","DOIUrl":"10.1016/j.progpolymsci.2023.101783","url":null,"abstract":"<div><p><span><span>This review presents a comprehensive description of the current pathways used in the chemical recycling of oxygenated plastics, with a specific focus on poly(ethylene terephthalate) (PET), poly(bisphenol-A carbonate) (PC), and polyethers including anhydride-cured epoxies. For </span>PC<span> and PET<span>, the emphasis is on processes that achieve high depolymerization efficiencies as well as </span></span></span>monomer<span><span> selectivity and the potential to simplify downstream processing for the recovery of pure monomers. In the case of epoxies, this work focuses on depolymerization processes that produce curable molecules, as studies on epoxy depolymerization are scarce. To assess scalability, different depolymerization pathways are compared for each polymer based on the process conditions and monomer yields. The review concludes with the discussion on potentials and challenges of the distinct depolymerization pathways that have been developed for oxygenated plastics, such as hydrolysis, </span>alcoholysis, and reductive depolymerization.</span></p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"149 ","pages":"Article 101783"},"PeriodicalIF":27.1,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139059587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advances in polyhydroxyalkanoates degradation and chemical recycling 聚羟基烷酸酯降解和化学回收的最新进展
IF 27.1 1区 化学
Progress in Polymer Science Pub Date : 2023-12-27 DOI: 10.1016/j.progpolymsci.2023.101781
Ali Dhaini , Valérie Hardouin-Duparc , Ali Alaaeddine , Jean-François Carpentier , Sophie M. Guillaume
{"title":"Recent advances in polyhydroxyalkanoates degradation and chemical recycling","authors":"Ali Dhaini ,&nbsp;Valérie Hardouin-Duparc ,&nbsp;Ali Alaaeddine ,&nbsp;Jean-François Carpentier ,&nbsp;Sophie M. Guillaume","doi":"10.1016/j.progpolymsci.2023.101781","DOIUrl":"10.1016/j.progpolymsci.2023.101781","url":null,"abstract":"<div><p><span><span>Plastics are nowadays essential to our daily life for a wide range of applications. In order to face the demand of polymer markets, given the depletion of fossil feedstocks<span><span> from which they are still most commonly produced, and with the aim to develop more ecofriendly plastic materials, the need for renewable and/or recyclable polymers is huge. Polyhydroxyalkanoates (PHAs) are a class of polyesters that could meet the challenges of such a circular economy, as they currently stand as promising bio-based, degradable and recyclable alternatives to traditional non-degradable commodity polymers that are </span>polyolefins. PHAs typically feature different side-chain substituents on the repeating units, which beside the </span></span>stereochemistry along the polymer backbone and the intrinsic characteristics of the </span>macromolecules<span>, are key parameters that dictate and enable tuning of their thermal, mechanical, and recyclability performances. PHAs are thus a large family of versatile polymers that are currently of topical interest in light of their end-of-life options. This review discusses the chemical recycling of natural, biosynthetic and synthetic PHAs, mainly focusing on the most common examples, namely poly(3-hydroxybutyrate) (PHB), and its related copolymers<span>. The most relevant non-biotechnological approaches, including pyrolysis-type processes, and solvolysis<span><span> with especially hydrolysis and alcoholysis, whether they are catalyzed or not, are then addressed. The latest advances on the degradation, </span>depolymerization and upcycling of PHAs, show promising outcomes for a close-carbon cycle economy with a favorable environmental impact, as exemplified from the most recent literature.</span></span></span></p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"149 ","pages":"Article 101781"},"PeriodicalIF":27.1,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139059781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信