{"title":"用于驱动的液晶弹性体:结构-性能-功能关系透视","authors":"Zhi-Chao Jiang , Qing Liu , Yao-Yu Xiao , Yue Zhao","doi":"10.1016/j.progpolymsci.2024.101829","DOIUrl":null,"url":null,"abstract":"<div><p>Liquid crystal elastomers (LCEs) have long held significant promise as materials for artificial muscles and smart actuators. Recent advancements in this field have introduced innovative LCE structures at various scales, resulting in novel properties and functionalities that further accentuate their actuation advantages, bolstering their potential as future soft actuation systems. The ongoing pursuit of enhanced performance and functionality in LCE actuators, essential for advancing them towards superior material-based machines and devices, is intricately linked to the understanding of the fundamental structure-property-function relationships. This review provides a perspective on these relationships across multiple structural levels, encompassing chemical structures, mesophase structures, and micro-to-macroscale programmed structures. It delves into the impact of various LCE structures on key actuation-related properties, actuation features, and functionalities. This review aspires to provide valuable insights into the design of high-performance LCE actuators, the development of exceptional actuation modes and behaviors, and the expansion of achievable functionality.</p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"153 ","pages":"Article 101829"},"PeriodicalIF":26.0000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079670024000467/pdfft?md5=da0b8b4fb9340cf2e1344d6358b03929&pid=1-s2.0-S0079670024000467-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Liquid crystal elastomers for actuation: A perspective on structure-property-function relation\",\"authors\":\"Zhi-Chao Jiang , Qing Liu , Yao-Yu Xiao , Yue Zhao\",\"doi\":\"10.1016/j.progpolymsci.2024.101829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Liquid crystal elastomers (LCEs) have long held significant promise as materials for artificial muscles and smart actuators. Recent advancements in this field have introduced innovative LCE structures at various scales, resulting in novel properties and functionalities that further accentuate their actuation advantages, bolstering their potential as future soft actuation systems. The ongoing pursuit of enhanced performance and functionality in LCE actuators, essential for advancing them towards superior material-based machines and devices, is intricately linked to the understanding of the fundamental structure-property-function relationships. This review provides a perspective on these relationships across multiple structural levels, encompassing chemical structures, mesophase structures, and micro-to-macroscale programmed structures. It delves into the impact of various LCE structures on key actuation-related properties, actuation features, and functionalities. This review aspires to provide valuable insights into the design of high-performance LCE actuators, the development of exceptional actuation modes and behaviors, and the expansion of achievable functionality.</p></div>\",\"PeriodicalId\":413,\"journal\":{\"name\":\"Progress in Polymer Science\",\"volume\":\"153 \",\"pages\":\"Article 101829\"},\"PeriodicalIF\":26.0000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0079670024000467/pdfft?md5=da0b8b4fb9340cf2e1344d6358b03929&pid=1-s2.0-S0079670024000467-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079670024000467\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079670024000467","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Liquid crystal elastomers for actuation: A perspective on structure-property-function relation
Liquid crystal elastomers (LCEs) have long held significant promise as materials for artificial muscles and smart actuators. Recent advancements in this field have introduced innovative LCE structures at various scales, resulting in novel properties and functionalities that further accentuate their actuation advantages, bolstering their potential as future soft actuation systems. The ongoing pursuit of enhanced performance and functionality in LCE actuators, essential for advancing them towards superior material-based machines and devices, is intricately linked to the understanding of the fundamental structure-property-function relationships. This review provides a perspective on these relationships across multiple structural levels, encompassing chemical structures, mesophase structures, and micro-to-macroscale programmed structures. It delves into the impact of various LCE structures on key actuation-related properties, actuation features, and functionalities. This review aspires to provide valuable insights into the design of high-performance LCE actuators, the development of exceptional actuation modes and behaviors, and the expansion of achievable functionality.
期刊介绍:
Progress in Polymer Science is a journal that publishes state-of-the-art overview articles in the field of polymer science and engineering. These articles are written by internationally recognized authorities in the discipline, making it a valuable resource for staying up-to-date with the latest developments in this rapidly growing field.
The journal serves as a link between original articles, innovations published in patents, and the most current knowledge of technology. It covers a wide range of topics within the traditional fields of polymer science, including chemistry, physics, and engineering involving polymers. Additionally, it explores interdisciplinary developing fields such as functional and specialty polymers, biomaterials, polymers in drug delivery, polymers in electronic applications, composites, conducting polymers, liquid crystalline materials, and the interphases between polymers and ceramics. The journal also highlights new fabrication techniques that are making significant contributions to the field.
The subject areas covered by Progress in Polymer Science include biomaterials, materials chemistry, organic chemistry, polymers and plastics, surfaces, coatings and films, and nanotechnology. The journal is indexed and abstracted in various databases, including Materials Science Citation Index, Chemical Abstracts, Engineering Index, Current Contents, FIZ Karlsruhe, Scopus, and INSPEC.